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We present Mini-Map, a novel web-based workflow for mixed-initiative mind-mapping
using query expansions enabled by ConceptNet— a large graph-based representation of “com-
monsense” knowledge. Mind-maps are now widely recognized as thinking tools for creative
tasks such as conceptual design. Nonetheless, creating a mind-map can be challenging es-
pecially for beginners either due to low domain knowledge or personal inhibition. Despite
extensive knowledge databases on the web, there is currently limited computational support to
augment users’ ability to fully explore the vast information sources available at their disposal.
Our work demonstrates that by using the rich relational ontology offered by ConceptNet, we
can faithfully emulate human-like collaborative behavior toward useful exploration of ideas in
early design. We present a comparative analysis of human-human collaborativemind-mapping
and the Mini-Map workflow.

I. Introduction
This paper seeks to enable and understand how humans and computers can creatively co-generate ideas with equal

participation to explore concepts around a design problem. To this end, we present Mini-Map, a digital workflow for
mixed-initiative mind-mapping wherein a human designer and a computer program take turns to create a mind-map
for a given design problem. The workflow is designed to gamify the process of mind-mapping where a designer is
collaboratively playing a game with an Intelligent Agent (AI). The AI-player is powered by ConceptNet [1–4], which
is presently one of the largest commonsense knowledge base that covers assertions between concepts through rich
relational ontology.

Mind-mapping is widely used for early-stage design brainstorming by creating a network (mostly tree-like structures)
of concepts or ideas surrounding a central idea. From this viewpoint, mind-maps are primarily tools for problem
understanding before problem solving in that they allow an unconstrained exploration of a variety of ideas along with
the relationships between those ideas in a hierarchical fashion. The rules of creating a mind-map are rather simple: one
starts with a central idea and creates two to three branches leading to related ideas repeating the process for each newly
added idea. Furthermore, there are now several digital tools [5–12] that can be used to create and document mind-maps.
Despite this, creating such maps can be challenging, especially for novices for a number of reasons including but not
limited to (a) lack of knowledge in the domain of a given design task, (b) unstructured and ill-defined task that requires
self-creativity and adaption, (c) inability to readily recall known concept, (d) inability to envisage relationships across
concepts due to complex couplings between variables, and (e) high dimensionality of the problem space.

Our work draws from the notions of mixed-initiative co-creativity elaborated by Yannakakis et al. [13] and study
a simple yet powerful workflow in the context of exploratory creativity in early design. Specifically, we present
the following ideas. First, we introduce a new work-flow — Mini-Map — that re-formulates mind-mapping as a
collaborative game between human and computer collaborators. Second, we present a novel algorithm that is powered
by the relational ontology offered by ConceptNet [1] in conjunction with statistical, topological, and temporal rules for
adding concepts as nodes to the mind-map. Finally, we conduct a human subject study where we compare human-human
and human-computer collaboration for mind-mapping. Our evaluation is based on the adaptations of well-established
creativity metrics proposed in design research [14]. This comparison demonstrates the efficacy of our approach
for digital mind-mapping and offers some critical insights into how digital mind-mapping can be advanced through
mixed-initiative approaches.
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A. Contributions
We make three primary contributions in this paper. (a) Our work is first of a kind to present human-computer

collaboration for an unstructured task scenario. (b) By performing multiple iterations of the proposed algorithm, we
present knowledge on how computer can perform better in a mixed-initiative task. (c) We conduct a user evaluation
comparing Human-Human (HH) and Human-Computer (HC) collaboration using computational and subjective
methods.

II. Related Works

A. Mind-maps for Ideation
Mind-maps can enable effective thinking and learning [15, 16] through rapid idea expression and divergent

exploration [17]. Their general structure makes them useful for a wide variety of applications ranging from document
drafting [18], project planning [19], and decision making [20]. Zampetakis et al. [21] discuss the utility of mind-maps
in the learning process of engineering students. Specifically during design ideation, they can be immensely useful
for reflection, note-taking, idea communication, and idea synthesis while reducing the cognitive load accompanied
with retrieving and maintaining diverse knowledge elements [22, 23]. Apart from their structure, mind-maps can be
further enriched by colors, images, arrows, and dimension to reflect personal interest and individuality [24]. Given our
specific focus mixed-initiative interactions for mind-mapping, we have constrained the variations in the visual variables,
restricting the idea representation to a a simple node-link diagram with words (and potentially phrases) as the node
content.

B. Digital Mind-mapping
Several works have investigated the effect of interactivity offered by digital tools on idea generation and collaboration

in mind-mapping. Buisine et al. [25] showed that there is no significant difference in idea production between digital
tabletop-based and traditional paper-and-pencil mind-mapping workflows. However, they also report better collaborative
dimensions, especially by leading to better-balanced contributions from the group members. Faste and Lin [26] evaluated
numerous existing mind-mapping software applications, performed ethnographic studies with a variety of users, and
developed a framework of principles to guide future development of digital mind-maps. Orehovavcki et al. [27] address
the quality in use of Web 2.0 applications for mind-mapping purposes. They found that participants feel highly satisfied
with Web 2.0 applications that have the following attributes: ease of use, effectiveness, controllability, interactivity,
navigability, customizability, efficiency, information content coverage, understandability, and reliability.

C. Automated Mind-mapping
Several works [28–31] have investigated text mining and machine learning approaches for mind-map generation.

However, these are fundamentally different from our approach as they focus on completely automated generation of
maps. To the best of our knowledge, ours is the first approach that demonstrates a successful collaborative behavior
between human and computer agents for mind-mapping.

D. Identification of Gaps
There have been several efforts [32, 33] in enabling mixed-initiative systems in the domain of game design.

Most of these works are essentially targeted toward procedural content generation in computer games. While there
are recent advances in aerospace design domains such as the Daphne system [34], there is currently little known
about how human-computer co-creativity could be materialized for engineering and product design domains in early
conceptualization. Our work is a step toward filling this knowledge gap.

III. Technical Approach
Our technical approach is driven by the observation that in a digital setting where the user has access to vast

knowledge databases, the cognitive processes underlying mind-mapping could be effectively supported by systems that
allow for not just querying singular concepts from the database but by allowing the user to expand upon those queries.
Second, mind-maps lend themselves to a natural graph based structure with concepts (words/phrases) as nodes and their
relations as the links or edges. Based on this, our approach is to use ConceptNet, a semantic network that contains a
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graph-based representation with nodes representing real-word concepts as natural language phrases (e.g. block a door,
be abandoned, etc.), and edges representing semantic relationships.

A. Problem Formulation
We assume a mind-map to be a tree (an acyclic graph), say M(V, E) with a set of nodes VM and edges EM and the

construction of a mind-map can be viewed as an iterative sequence of breadth-first (i.e. exploring the aspects around a
problem) and depth-first (i.e. adding detailed and concrete ideas). The root node of this tree is the central problem
around which and we aim to emulate this behavior in a collaborative fashion wherein a human and an automated agent
are collectively working to diversify ideas around the root node. We formulate process of mixed-initiative mind-mapping
as a collaborative interactive game that is being played by a human and an intelligent agent (AI). Given a central topic,
the aim for the human and AI collaborators is to expand the map by exploring different aspects of the topic (breadth-first),
and refine each of these aspects by adding detailed concepts (depth-first). In order to do this, the collaborators are given
a seed topic as the root node of M and the human and AI players take turns to add nodes to M . Furthermore, each player
is allowed exactly one node addition per turn.

Given any state of M (the simplest being a given root node representing the central idea), there are two primary
algorithmic steps that are needed for creating a mini-map. The first step is target search wherein the AI needs to
determine a target node (a node where a new node will be added). Subsequently, the second step is content generation
wherein the AI needs to define the content (words and phrases) that will be added to the target node to ultimately expand
the space of ideas around the central problem.

B. Approach

1. Target Search
One of the most important aspects of mind-mapping that we wish to capture is divergent idea exploration that is key

in ideation processes. Additionally, we also wish to support detailed exploration of a given chain of ideas (formally this
would be a path from the root node to a given leaf node in M). For this, our main goal is to model the behavior of the AI
player in such a way that M evolves in a breadth-first fashion in the initial stages of mind-mapping and transitions into a
depth-first target selection during the later stages of the evolution of M. In this work, we experimented with several
alternatives for target search including completely random target search, search based on the topological and temporal
evalution of M , and search based on the level of expansion on a node-by-node basis. These are described in detail in
subsequent sections.

2. Content Generation
Drawing from the notion of query expansion and pseudo-relevance feedback, we develop the method for content

generation via ConceptNet [35], a large graph of concepts where two concepts are directly connected with an edge
if there is a semantic relation between them. Our choice is based the the potential of ConceptNet for making more
complex, multi-step inferences that are helpful in query formulation and the identification of poorly performing queries.
Other existing methods for query expansion rely mostly on content-retrieval analysis (Wiki) or lexical-semantic database
such as WordNet [36]. However, although WordNet is widely used to provide hypernym relations in a hierarchical
fashion, ConceptNet allows for the organization of related concepts based on a diverse set of relations (such as “IsA”,
“HasA”, “UsedFor”, “CapableOf ”) resulting in a broader scope of queries that WordNet synsets would not allow. Using
this feature of ConceptNet, we developed several alternatives for selecting the content for node addition such as global
median, relation-dependent median, and context-dependent weighting schemes. These are detailed in the subsequent
sections.

C. Algorithmic Iterations
In this work, we take an iterative approach for the development of the Mini-Map algorithm. Specifically, our final

algorithm for Mini-Map was developed based on three prior iterations. We combined different alternatives for target
search and content generation in each iteration and conducted small scale pilot studies with users. The observation of
the resulting mind-maps and issues raised by users allowed us to refine each subsequent iteration culminating in our
final algorithm. Below, we provide a detailed account of our iterations and the key insights we gained in terms of the
AI-behavior we observed.
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Iteration 1: Random target median content

Fig. 1 Illustration of iteration 1 in our approach. The resulting mind-map shows several disadvantages: users
hard to keep up responses from AI because of random target search; the AI is unable to generate multiple ideas
to one concept; and the generated content might be out of context (which are highlighted in red boxes: influenza,
navigated, empasm, etc.)
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Fig. 2 Illustration of iteration 2 in our approach. The resulting mind-map shows a main disadvantage: the AI
generates content with little or no relevance to the context of current mind-map (which are highlighted in red
boxes: buoyancy is a type of tendency, make artificial snow, etc.)

1. Iteration 1: Random Target and Median Content
In our first iteration, we applied a simple rule for selecting targets to add a new node to (Figure 1). Given the

current state of a map M with nodes VM and edges EM , we first randomly select a concept v ∈ VM . Then, we
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Iteration 3: Topo-temporal target and globally contextual content
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v1

(1s,0)

v7

(0s,1)

Fig. 3 Illustration of iteration 3 in our approach. The resulting mind-map reveals several disadvantages: the
AI can not response to last added node due to measure from inactivity in target search, and the generated
contents become abstract as mind-map grows (which are highlighted in red boxes: kite from the air and fly, blow
from wind and breathing, room from wind and space).

retrieve a set Q = {qi |(v, qi) ∈ E(C), i ∈ [1, k]} and sort it in decreasing order of the edge weights in ConceptNet (i.e.
w(v, q1) ≥ w(v, q2) ≥ · · ·w(v, qk) ). For content generation, we select the concept with the median edge weight and add
to the selected node. The computation terminates when there are no further concepts where the AI can add a node (this
is guaranteed since there is only one median element in a given set). Given a target node, the seemingly obvious choice
would be to query the target node and generate content based on the highest weighted results given by ConceptNet. This
approach clearly leads to more abstract concepts being added to the map as it grows — a scenario that is in contrast with
how mind-mapping is typically performed. For instance, for a central topic such as “Aircraft”, adding a node “fly” leads
the intelligent agent to add the word “sky” followed by “blue” and “a colour of the rainbow)”. The primary reason
for choosing the median weighted edge is the observation that the edge weight distribution of the linked concepts in
ConceptNet is skewed. Hence, taking the median instead of other statistical aggregates such as mean results in a more
robust result in terms of preserving the relatedness as well as diversity of the added concepts.

Our naive approach provided some interesting results (Figure 1) for the central topic Aircraft. As can be seen, the
method is able to produce reasonable maps that can potentially lead to technically feasible solutions to the problems.
However, we also observe that the AI partner sometimes adds nodes that may not be relevant to the current design
context (e.g. “navigated” in response to “navigate”) or related concepts that may not be useful in arriving at solutions
(e.g. “fight-or-flight” in response to “emergency”). The second limitation of the naive method is the fact that the AI
partner can not add more than one node to a given existing concept in the existing map. This is merely the result of the
fact that there is only one median that we can choose for a given ConceptNet query

2. Iteration 2: Topo-Temporal Target and Relation-Dependent Content
In order to overcome the obvious shortcomings of random target search, our second iteration investigated a method

for target search based on the topological and temporal evolution of a given mind-map. Here, for each node v ∈ VM , we
introduce two penalty terms, namely, inactivity (in(v)) and normalized lineage (nl(v)). Here, in(v) is computed based
on the time elapsed since last activity that occurred at node v (i.e. addition of a child node). Upon addition of a child
node to v, we reset in(v) = 1 and linearly decrease in(v) at every computation cycle until it reaches 0. Further, nl(v) is
computed by normalizing total count of all descendents of v. It is 1 for a leaf node of M and 0 for the root node. By
applying a threshold to these penalties, the AI determines the target nodes that lie below the threshold.
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In order to enable the AI to add multiple nodes to target node, we further subdivide a given query list into the defined
relation-categories and add median-weighted concepts from each of these categories starting from the highest to lowest
weights. This also allows the AI to preserve both the relevance (higher weights) and novelty (lower weights) in the
resulting mind-map (Figure 2). However, we found that the content generation with this approach usually led to addition
of concepts with little or even no relevance to the context of current mind-map. For instance, “buoyancy” leads to
“tendency” and “machine oil” leads to “make artificial snow”.

3. Iteration 3: Topo-Temporal Target and Globally Contextual Content
Considering the behavior results from iteration 2, we modified our content generation rules keeping the target search

the same as iteration 2. Our intent was to take into account the context of the currently evolving mind-map during the
generation of new content. For this, at any given state of the mind-map, we compile a list of queries that are common
across all concepts in the mind-map. Subsequently, we use the subdivided median weight approach similar to iteration 2
for this common list. This ensures that the generated contents share common properties from the existing context in
a mind-map (Figure 3). From iterations 2 and 3, the measure of time in deciding potential targets make the AI not
response to any last added node by user, since they just got active. This phenomenon results in user feedback such as
“make me lose my train of thought”. Also, we found out if choosing from overlapped concepts from the whole context,
the results are also going to become abstract as the mind-map grows, hence lose focus. For example, kite was generated
based on fly and the air, blow from wind and breathing (Figure 3).

D. Final Mini-Map Algorithm
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(a) Mini-Map target search
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Fig. 4 Illustration of the algorithm to generate a new node from computer using retrieved weighted relations
through ConceptNet Open Data API. (a) Considering a branch from current mind-map, find “where” to add
based on sorted depth and number of children of all nodes. (b) Trace back to the central topic (root). Retrieve
query results (L) from ConceptNet with respect to each node. Then find the common concepts across the
retrieved results (L). (c) Categorize the common concepts and sort it by weights in ConceptNet. Computer adds
a new node from median weight.

1. Target Search: Expansion Threshold
The main issues with the previous iterations of the target search was the imbalanced addition of nodes to the

map leading to heavily biased exploration of ideas. The temporal approach for node addition further pronounced this
imbalanced map evolution leading to longer chains (meaning more detail-based exploration). In our final iteration, we
developed a target search strategy based on expansion threshold. The basic idea is to enforce a breadth-first strategy
(i.e. nodes closer to the root get preference) in a manner that ensures a bare minimum expansion of a given node.
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Specifically, the AI would traverse the mind-map starting from the root and will prefer the target closest to root with
less than an expansion threshold (i.e. a pre-determined number of child nodes). Based on experiments, the expansion
threshold of three child nodes was determined to be reasonable. (Figure 4(a), Algorithm 1). Note that this algorithm has
a guaranteed termination criterion since there are always leaf nodes in M (i.e. nodes with no child nodes).

Algorithm 1 Target Search
Input: Current mind-map M = (VM, EM )
Input: Bi-ordered Index Set X ∈ Z3

Output: Target Node vT ∈ VM

Output: Updated Bi-ordered Index Set X ∈ Z3

1: if X = ∅ then
2: X ← ∅ ∈ Z3

3: for vi ∈ VM do
4: x1 ← depth of vi
5: x2 ← number of children of vi
6: x3 ← i
7: x← (x1, x2, x3)
8: X ← X ∪ {x}
9: end for
10: X ← Sort(X, descending order in x1)
11: Dmax ← maximum depth of M
12: for d ∈ [1,Dmax] do
13: X ⊃ Xd ← {x = (x1, x2, x3) ∈ X |x1 = d}
14: Xd ← Sort(Xd, descending order in x2)
15: end for
16: end if
17: for d ∈ [1,Dmax] do
18: X ⊃ Xd ← {x = (x1, x2, x3) ∈ X |x1 = d}
19: for xj = (x j

1 = d, x j
2, x

j
3) ∈ Xd do

20: if xi2 < 3 then
21: i ← x j

3
22: vT ← vi ∈ VM

23: xi1 ← xi1 + 1
24: return vT , X
25: end if
26: end for
27: end for

2. Content Generation: Path Dependent Context
In iteration 3, the primary disadvantage of using the whole mind-map to determine context-dependent content is that

the resulting generated content is abstract. This is natural since the concepts in the whole mind-map, since reasonably
dissimilar, are bound to be connected only be the most abstract concepts. For instance, kite was generated based on the
air and wind (Figure 3). While we did aim at contextual relevance, we also wanted to maintain an appropriate level of
detail as the map evolves. To achieve this, we implemented our final content generation algorithm by defining context
based on the pat rather than the whole map. Specifically, given a target node vT ∈ VM , the idea is to create a doubly
sorted list, Lcommon, of all concepts that are common to all concepts along the shortest path from vT to the central
idea. Here, by doubly-ordered, we mean that: (a) the all entries in Lcommon are listed categorically based on the 25
relationship types provided by ConceptNet, (b) the entries for each relationship type are further ordered with decreasing
weight of the relationship, and (c) the relations are themselves ordered from highest to lowest total weights ((Figure 4(b),
steps 1 to 16 in Algorithm 2)).
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3. Content Generation: Relation Nodes and Median-Weighted Nodes
Similar to the strategy in iteration 2, we retained the capability of the AI to add multiple nodes from within the

same relationship. Given a list of common ConceptNet queries along a path, we achieve this by subdividing the list
into relation-categories for allowing AI to be able to add multiple nodes to an existing concept and preserving both the
relevant (higher weights) and novelty (lower weights) (Figure 4(c)). In a typical mind-map, the nodes connected to the
central idea usually determine the type of details that will be consequently added. For instance, for a topic such as
pollution, one may first add nodes such as causes, effects, mitigation etc. instead of mentioned what the causes are or
what the effects will be or how to mitigate pollution. This is difficult to achieve by simply adding median-weighted
queries from ConceptNet. Here, we take a crucial step here; we observed that the relationship types in ConceptNet
are themselves helpful to users in organizing their ideas, particularly during early phases of mind-map evolution. We
capture this by enforcing the AI to add ConceptNet relations as content nodes as the first several main branches from
central topic contained in the root node (steps 17 to 22 in Algorithm 2).

Algorithm 2 Content Generation
Input: Target Node vT ∈ VM

Input: Relation Descriptor Set R(vT )
Output: Concept c ∈ VC from ConceptNet graph C = (VC, EC)
Input: Relation Descriptor Set R(vT )
1: Pv ← list of nodes on the shortest path between vT and Root Node
2: Lcommon ← ∅
3: for pi ∈ Pv do
4: Li ← {(cj, rj,wj)|(p, cj) ∈ EC} (rj is the type of relation, wj is edge weight))
5: end for
6: Ltemp ←

⋂ |Pv |
i=1 Li

7: Ltemp ← Sort(Ltemp, alphabetical order o f ri)
8: for all r ∈ R do
9: Ltemp ⊃ Lr ← {li = (ci, ri,wi) ∈ Ltemp |ri = r
10: Lr ← Sort(Lr, descending order o f wi)
11: Wr ←

∑
wi∀li ∈ Lr

12: end for
13: RL ← {Lr1, Lr2, . . . }
14: RW ← {Wr1,Wr1}
15: Lcommon ← Sort(RL, descending order o f RW)
16: R(vT ) ← Sort(R(vT ), descending order o f RW)
17: if Depth of vT = 0 then
18: c← r1 ∈ R(vT )
19: else
20: c← cj ∈ Lr1 |wj = meadian(wj∀l j ∈ Lr1)
21: R(vT ) ← R(vT ) − {r1}
22: end if
23: return c, R(vT )

IV. Implementation Details

A. Front-end Design

1. Visual Encoding
Similar to traditional mind-maps, the central topics are always reasonably sized. From main branches to details,

we encode varying font size and color gradient to visually represent the emphasis of the information. Ideas added
from different users would be given different color schemes, which helped users to recognize the thought flow easily.
Ideas are spatially organized in the mind-map using forced-links structure in D3JS. Such force-directed layout can help
produce elegant spreading of nodes and reasonable visibility of links even with large dataset.
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Fig. 5 Flow showing the front-end (user interaction) and back-end (data processing) pipeline in HH and HC.

2. Interactions
We designed a game-like interaction for users to collaboratively create a mind-map; users take turns to add nodes.

In each turn, users are allowed to add only one node by double-clicking on any of the existing nodes. An input dialog
pops up after double-clicking in the editor workspace. Once a valid answer submitted, our system creates a new child
node with the double-clicked one being its parent node. A link is created automatically between them. This offered
users minimal manipulation in the construction of a tree type structure. On the other hand, while it is not your turn, an
layer appears on top of the interface to prevent any interactions.

B. Back-end

1. MiniMap.js Library
Mini-Map used a JSON data structure specifically designed for mind-map, which included two major components:

node object and link object. Node object has attributes including position data (x,y), properties (unique label, parent,
children, depth, etc.) and time series data (added time, modified time). Link object has attributes including source node,
target node and a unique label. Whenever a mind-map is imported or loaded into the workspace, the JSON file is read
by Mini-Map and corresponding mind-map regenerated.
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2. ConceptNet API
We incorporated JSON-LD API (Linked Data structure) offered by ConceptNet Open Data API in Mini-Map. The

API allows for querying a word or a phrase through HTTP request and provides a URL to a page containing all related
words and phrases to the query in a linked data format. For each concept in the linked data, /en/ stands for its language
code, rel contains corresponding relation such as “UsedFor”, “CapableOf ”, etc., and the strength with which this
relation expresses this concept is stored in weight. The linked data also provides human-readable label in start and end.

3. Firebase Pipeline
Mini-Map was implemented using Firebase Database REST API written in javascript (Figure 5). Each mind-map

data is stored in Firebase Realtime Database with corresponding user ID. In a collaborative setting where two users
are working with the same mind-map, Mini-Map employs a listener function to scan Firebase Realtime Database at
intervals of 3 seconds. It checks for changes in the mind-map data, and updates the current mind-map based on the
latest data found from Firebase.

V. User Evaluation
We conducted a comparative study to understand how humans interact with their collaborator and explored human

behavior in a controlled experimental setup. Our study tasks were designed with two major goals in mind. First, we
want to gain insight on how our approach compares with a typical human-human collaboration scenario in terms of
quality, variety, and novelty of ideas generated through mind-mapping. Second, we want to understand if our approach
can truly facilitate a human-like collaboration experience for design applications.

A. Procedure and Participants
With these goals in view, we performed a user study with two distinct groups of participants. The first group

(HH) comprised of 28 human participants who were asked to create mind-maps in pairs. The second group (HC) of
participants comprised of 14 individuals who co-created their mind-maps with Mini-Map as the collaborator. Both the
HC and HH participants did not know the type of agent they were collaborating with. In order to simulate human-like
behavior, we delayed the response from the computer by 5 to 10 seconds in HC study.

Our participants were primarily undergraduate and graduate students from engineering, sciences, and architecture
majors to help us sample from a wide variety of disciplines and age groups. The total time taken during the experiment
varied typically vary between 30 to 35 minutes. After conducting the demographic survey, describing the purpose of
the study, basic features of the system were explained and participants were allowed some time to get acquainted with
the setup. In addition, participants were encouraged to ask questions for any further clarifications regarding the study.
Following this, the participants created mind-maps for given topics. Each group of participants was asked to create only
one mind-map for a given topic.

After preliminary study with various topics, we choose the topics Solar Energy and Space Travel for the user study.
Solar Energy is a specific topic and we want to test whether our algorithm is able to add constructive nodes in any given
context. Space Travel, on the other hand, is a general topic which stimulates the user to imagine, perceive and explore
various directions. Our goal is to observe the capability of our algorithm to help the user explore and organize their
thoughts both in a specific and open-ended domain. The participants were given 10 minutes to work on each of the
aforementioned topics. Also, their screen was recorded over the duration of a given mind-mapping task based on their
consent.

B. Data Collected
On completion, each participant were asked to complete a feedback questionnaire based on their experience during

the mind-map creation tasks. Here, we wanted to understand the differences in perception of the mind-mapping process
from our participants in the HH and HC groups. For this, we conducted a “peer evaluation” from each participant at
the end of the mind-mapping session. Our peer evaluation was based on the recent work by Gilon et al. [37]. Also, the
whole process of mind-mapping was screen recorded with the consent of the participants.

In addition to specific questions about the interface and collaborator, the users were also asked to predict whether
their collaborator was a human or computer. The reasons behind every participant’s choice were also elicited and
collected. The aim of this question was not to mislead the participant in thinking of the collaborator as a human or
computer, but to gain insights on the behavioural aspects and how the users perceived their collaborator’s typical
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behavior. This was inquired both to understand the specific human-like attributes that was reflected in the Mini-Map
and to develop understanding of particular shortcomings of HH interface that could be overcome by the Mini-Map.

C. Metrics

1. Computational Metrics
In order to perform automatic semantic analysis within the two user groups, we used ConceptNet Numberbatch [2],

a word embedding model that has been shown to be measurably better than word2vec [38] and Glove [39]. After the
model had been trained, we can visualize the learned embeddings using t-SNE (t-Distributed Stochastic Neighbor
Embedding) [40] for dimensionality reduction (Figure 8). As the vector space was modeled and each word had its
unique vector representation, we used Euclidean distance to measure semantic distance within central topic and ideas in
the resulting mind-maps, and plotted the frequencies to identify the diversification of ideas.

2. Subjective Metrics
The mind-maps created at the end of the user study were evaluated by two expert raters. The raters selected

were unaware of the study design and tasks, and were not furnished with any information related to the general study
hypotheses other than final mind-maps created. Also, the mind-maps generated by HC and HH study were randomized
and de-identified before they were shared for further evaluation. Both the raters were senior graduate research students
(and potentially faculty members) in engineering and product design disciplines and were asked to rate each mind-map
based on well-established metrics. From the mind-map assessment rubric [41], we adapted the metrics Structure,
Exploratory, Communication and Extent of Coverage for a comprehensive assessment of the mind-maps. The raters
were then asked to evaluate every mind-map based on these metrics on a scale of 1 to 4 (Figure 6).

Level 1 Level 2 Level 3 Level 4

Structure Few ideas radiate 

from center. Not very 

clear

Some ideas radiate out 

from center but are 

not suitable to topic

Ideas radiate out from 

center in a clear 

picture that involves 

imagination and 

creativity

Ideas provide a 

complete picture with 

a high degree of 

imagination and 

creativity

Exploratory Ideas are not 

connected from most 

complex to simplest

Some ideas move 

from most complex to 

simplest

Ideas are arranged in 

order of importance 

from most complex to 

simplest

Clear and highly 

effective indication of 

connection between 

ideas and center topic

Communication Limited use of 

keywords

Key words are used. 

Average 

understanding of topic

Good use of key 

words connected to 

central topic. Good 

understanding of topic

Highly effective use 

of key words. Deep 

understanding of topic

Extent of

Coverage

Limited or ineffective 

effort to connect main

ideas together

Good or adequate 

effort to connect main

ideas together

Effective effort to

connect main ideas 

together

Highly effective effort 

to connect main ideas

together

Fig. 6 Table explaining the metrics Structure, Exploratory, Communication and Extent of Coverage that
were given to the inter-raters as a reference for evaluating mind-maps. This was adopted from the mind-map
assessment rubric proposed by The School District of Clayton [41]

Further, we adapted the novelty and variety metrics as demonstrated by Linsey et al. [14] for evaluating ideation
outcome of our studies. The metrics are defined as follows.

• Variety: The raters were asked to create an exhaustive list of cluster of ideas after thoroughly going through all the
mind-maps created by the users. The variety score was then given by the percentage of clusters that was present in
the given mind-map.

• Novelty: The novelty score for the mind-maps were calculated by considering the number of other mind-maps
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present in the same cluster. That is, lower the number of ideas in cluster, higher the novelty. The following
formulae was used for evaluation of the novelty, where Nj is the Novelty score of the j th mind-map, T is the total
number of mind-maps, Ci is the number of mind-maps in the ith cluster and n is the number of clusters occupied
by the j th mind-map.

Nj =
1
n

n∑
i=1

T − Ci

T

The inter-raters were given the all the mind-maps and the specific grading rubric. The two raters independently
evaluated all the mind-maps for each of these metrics. Further, they were encouraged to discuss and come to a consensus
on their grading rubric. The modified values of the metrics were then checked for reliability between the two raters.
The Cohen’s Kappa value for the metrics Structure, Exploratory, Communication, and Extent of Coverage were found
to be in the range of 0.3 - 0.4, showing fair level of agreement and reliability between the two raters [42]. Also the
Pearson’s correlation between raters for variety and novelty scores was found to be above 0.8 (0.83 and 0.92). This
value of correlation coefficient is acceptable based on [42].
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Fig. 7 Distribution of Euclidean distances for word vectors between ideas and corresponding central topic in
HH and HC

VI. Results and Discussion

A. Semantic Analysis
For each given topic, we used t-SNE to visualize word embeddings (Figure 8) collected from mind-maps created in

both groups of users (HH and HC) using the pre-trained model from Numberbatch (78 languages, 300 dimensions) [2].
For a given given topic, we observe that most of the generated ideas seem to cluster in proximities of identifiable
regions and close to central topics regardless of HH or HC approach. This indicates that overall, Mini-Map can be
comparable to human-human collaborative mind-mapping in terms of the content generation. However, the structure of
the mind-maps were quite different in Mini-Map as compared to HH; users in HH tended to generate more ideas linked
with central topics than explore further, and users in HC were confined to the standard radial layout. In a way, such
non-hierarchical structure of the HCs can be used as effective design thinking tools [23].

Using Numberbatch vector space embeddings (Figure 8), we performed semantic similarity comparison by measuring
Euclidean distance between word vectors of ideas with its corresponding central topics. There are two main observations
to be made regarding the corresponding semantic distance distribution with Solar Energy and Space Travel (Figures 7).
First, the maximum distance in Solar Energy recorded for HH is 1.49, is the same as recorded for HC. In Space Travel,
the maximum distance is 1.47 for HH, whereas HC gets a higher score of 1.5. Thus, wherein Mini-Map is able to
generate problem-specific content, it is potentially helpful to users while working on open-ended topics. Second, apart
from the measured maximum distance which can be attributed to the broadness of one created mind-map, we observe
interesting trends in the distribution of distances between word vectors across HH and HC groups (Figures 7). Ideas
from both groups display high frequency in the distance range between 1 to 1.4, however, for HCs, the frequency stay
higher than HHs until the maximum distance ranges observed for both Solar Energy and Space Travel. This uncovers
the potential of Mini-Map which is capable of introducing diversified but still related content to users in creation of
mind-maps.
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(a) Numberbatch word embedding for Solar Energy (HH) (b) Numberbatch word embedding for Solar Energy (HC)

(c) Numberbatch word embedding for Space Travel (HH) (d) Numberbatch word embedding for Space Travel (HC)

Fig. 8 Visual representation (t-SNE) of word embedding for Solar Energy and Space Travel in HH and HC

B. Inter-rater Results
Two-way ANOVA was carried out with two independent variables — type of collaborator and choice of topic. We

found that the p-values across the HH and HC study were almost equal to zero for nearly all metrics (except for novelty
whose p-value across HH and HC was 0.12) indicating a statistically significant difference. However, the p-values
across topics were not less than 0.05 showing that the differences were not significant across topic. Results show that
the mean of the scores given by the inter-raters for all metrics except novelty was greater in HC study compared to HH
for both the topics (Figure 9). This strongly suggests that Mini-Map helped the users to develop a better mind-maps
overall. Specifically, the high values of Structure indicate that the mind-maps created with the Mini-Map interface
helped the user create a well-organized map. Perhaps, the target search algorithm might have guided the user to develop
a well-structured mind-map by finding the right place to add the node. Another important metric that showed significant
improvement is Communication and Extent of Coverage. This highlights how our algorithm for content generation
has utilized ConceptNet suitably and generated pertinent and rich vocabulary. The considerable increase in the value
of quantity(raw) shows that the Mini-Map algorithm could potentially help the users to generate more ideas within
a stipulated time compared to a human collaborator. Also, higher values of variety scores in HC suggests that the
median-weight algorithm has assisted the user to explore diverse directions. Such differences was not observed in the
values of novelty scores. This could mean that although the Mini-Map algorithm cover more number ideas, it was not
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necessarily unique.
It is to be noted that with small sample of user data, scores for few metrics were not completely normality distributed.

However, we carried out the ANOVA for the inter-rater data, since ANOVA is not sensitive moderate deviations from
normality. We believe that with greater sample size, we will have a more normally distributed data. However, major
insights of our work was exposed in the qualitative part of the study.

Condition Structure 

(1-4)

Exploratory 

(1-4)

Communication 

(1-4)

Extent of 

Coverage (1-4)

Quantity 

(raw)

Variety Novelty 

(0-1)

HH Solar Energy 2.43 2.36 2.39 2.21 21.50 66% 0.16

HH Space Travel 2.39 2.18 2.50 2.43 28.29 68% 0.20

HC Solar Energy 3 3.18 2.96 3.04 34.71 78% 0.21

HC Space Travel 3.54 3.36 3.14 3.29 44.43 82% 0.19

Average HH 2.41 2.27 2.45 2.32 21.71 67% 0.18

Average HC 3.27 3.27 3.05 3.16 35.07 80% 0.20

Fig. 9 The values of various metrics were averaged across topics and type of the collaborator. This table
summarizes the mean values of various metrics calculated by the expert raters.

C. User Feedback

1. Qualitative Feedback
We elicited the participant’s experience in collaborative mind-mapping using a 7-point likert scale survey questions

(Figure 10). In terms of ease of expansion of ideas and thoughts, the results show that Mini-Map was equally conducive
compared to a human collaborator. Interestingly, in the HH study for the topic Solar Energy, around 40% of the
participants were not satisfied with the mind-maps they created compared to HC study (about 10%). This might
potentially be because of the mismatch of ideas that the two users wanted to externalize causing a dissatisfaction in the
quality of the mind-map created, from the perspective of the user. Moreover, the response time was totally dependent on
the human collaborator in HH studies. Given a limited time, delayed responses from the users might have curbed the
user to develop a mind-map to their fullest potential — which likely causes a dissatisfaction between the users in the
HH study.

Majority of the users felt that the collaborator was creative in both HH and HC study. This shows that the
median-based algorithm used for concept generation gave interesting responses commensurate with human-level
creativity. Though a bit lower in the HC study, majority of the users from both the studies felt that the collaborative
mind-mapping would be a better environment for exploring more ideas than individual mind-mapping. These results
suggests that Mini-Map is at par with a human collaborator not only in terms of assisting the users to developing
greater number of ideas, but also by giving intriguing responses. As per one participant from HH study, “Integration
of ideas from the collaborator increased the overall quality of the mind-map”. Another user from HC study stated:
“My collaborator was smart and creative, helped explore ideas - and gave perspectives I hadn’t thought of ”. Thus, a
controlled collaborative setup, like our system, can be particularly helpful in early design stages.

Up to 50% of the users somewhat disagreed that the collaborator was not good at organizing their thoughts in the
HC study. Potential reason for this observation include the difference in approach of making mind-maps of the user
compared to the Mini-Map algorithm. This is contrasting to the outcome from the inter-raters claiming that mind-maps
created by the HC fared significantly well in terms of metrics like Structure and Extent of Coverage. Although our
algorithm does not go well with the user approach wise, it guides the user to create a better mind-map overall. This is
also corroborated by the fact that majority of the participants were satisfied with the mind-maps they created at the end
of the HC study.

In HC study, one general observations was that the context of the node generated slowly started to depend on the
nodes added by the human as time progresses. A participant of HC study stated: “At first it was making too good of
thoughts. Then it made some dull contributions”. So, if the nodes added by the human is well related to the central
topic, then the nodes added by the computer maintained the context and gave valuable responses. However, in some
cases the connection between the nodes added by human were not explicit. This might not always be identified with the
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limited semantic data base available, resulting in content generated using median weight method. In HH study, there all
more than 80% of the users felt that their partner was knowledgeable. However, there were mixed responses from the
user about the collaborator’s knowledge in the HC study. In the topic Space Travel, about 75% of the responses were
neutral or above. One user stated: “It was helpful for the topic Space Travel as I had minimal knowledge on that”. The
responses regarding the collaborator’s knowledge were slightly more negative for the topic Solar Energy. Since this is a
more specific topic, there could have been a greater room for diversifying, thereby increasing the possibility of losing
context to the idea generated by the median weight method.

Satisfied with the mind-map created?

Collaborator is knowledgeable about ‘Solar Energy’

Collaborator is knowledgeable about ‘Space Travel’

Collaborator is good at organizing his/her thoughts

Explored more ideas with collaborator than I could have 
explored alone

Collaborator is creative

Easy to span my ideas and thoughts? 

Satisfied with the mind-map created?

Easy to span my ideas and thoughts?

HH studyHC study
7-point Likert scale analysis

Solar 

Energy

Strongly 

Disagree
Disagree Somewhat 

Disagree
Neither Agree 

Nor Disagree
Somewhat 

Agree
Agree Strongly 

Agree

Space 

Travel

Fig. 10 7-point likert scale feedback from the user study conducted. The brown bars towards the right of the
central line indicate positive responses and blue bars to the left indicate negative responses

2. User’s Behavioral Perception of the Collaborator

Human Computer

Human 16 12

Computer 5 9

Number of users 
Predicted Collaborator

Actual 

Collaborator

Fig. 11 This table shows the number of users who predicted their collaborator to be a computer or a human
in two types of study conducted.

5 out of 14 users predicted their collaborator to be a human in the HC study conducted. Thus, our algorithm
seems to have simulated a human-like behavior 35.7% of the time. Interestingly, 12 out of 28 users from the HH study
predicted their collaborator to be computer. Interesting reasons for predicting Mini-Map to be human includes feedback
like “Smart and creative” and even “sly humour”.

In both HH and HC study, 35.7% and 42.8% of the participants predicted their collaborator wrongly. Thus,
there may exist uncertainty in claiming human-like behavior in Mini-Map algorithm just from this answer. However,
open-ended feedback from the users helped us elicit the reason behind their prediction of the type of collaborator. It
also helped us to develop understanding of how Mini-Map can simulate the useful aspects of human-like behaviors and
ways in which Mini-Map can prove to be more helpful than a human collaborator.
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D. Median-weighted Node vs Relation Node
Adding relationship node was mainly found to be helpful for categorizing the central ideas into branches. For

example, user responses suggests that nodes like ‘Space Travel has...’, ‘Requirement’, in the topic Space Travel and
nodes like ‘Capable of...’ in Solar Energy specifically gave fundamental directions to think about the given central
idea. Additionally, these nodes could have assisted the users to get started with mind-mapping analogous to initiating
a discussion to increase a person’s engagement. Moreover, one of the user’s statement: “I felt some part like a
conversation” might allude to the relationship type nodes.

E. Limitations
While having capabilities to explore and generate reasonable ideas around a central topic, the current status of

Mini-Map also has several limitations. First of all, at times, Mini-Map generate contents that are repetitive to context in
current map, synonyms, or overly sophisticated words that could not be interpreted by a common individual. Also,
there were instances where the content generation algorithm did not generate nodes directly related with the central
topic. Secondly, some median-weighted nodes added were not particularly helpful for further exploration. Rather, it was
analogous to a question and answer. For example, the node ‘long been a dream of mankind’ was added to the relation
node ‘Space Travel has...’. Thirdly, our algorithm is dependent on the limited data available in ConceptNet which is
largely a general relation dependent knowledge base. Thus, it has limited domain-specific knowledge.

VII. Conclusions and Future Directions
At its core, Mini-Map presents a digital mind-mapping work-flow for co-generating ideas with an intelligent agent as

a collaborating partner. Technically, we make two main contributions in the work-flow of the Mini-Map. First, we
incorporated guidelines on how to mind-map for identifying target nodes. Second, we demonstrated a relation-dependent
and path-dependent method to extract relevant content from ConceptNet to enable mind-map evolution. The user study
conducted consists of two groups of participants (HH and HC) to understand and evaluate the processes and outcomes
in collaborative mind-mapping. We found that Mini-Map could perform to the level of a human collaborator, in terms of
assessment from both semantic (Numberbatch embedding) and subjective (structure, exploratory, communication, extent
of coverage, variety, novelty) perspectives. In addition, even though our primary purpose was not to show a system
that fooled the user in believing that the collaborator was human, our system was able to . This could be a promising
prospect for future mixed initiative systems for novice users to learn and develop skills in unstructured design tasks.

There are several promising research directions that we envisage continuing with research. Our goal in the future is
to improve target search algorithm in Mini-Map by incorporating brain computer interfaces (BCI) or a cognitive model.
Such approach can provide us with information on identification of user attention level and preferences for a certain
contents in the mind-map, hence adjust Mini-Map’s behavior accordingly. In addition to implementing a reasoning
model, we are also interested in making our study crowd-sourcing since numerous time was taken in collecting user
data in a controlled experimental setup. Also, crowd-sourcing helps in collecting significant amount of data for a
comprehensive analysis. Moreover, we look forward to develop a database specific to design ideation that would bring
the most out of the Mini-Map workflow.

The current state-of-art in human automation interactions (Siri, Cortana, Alexa, and Google Assistant) are modeled
based on the metaphor of an intelligent assistant— these are solution-oriented systems that provide answers to reasonably
well-formulated problems. While there have been a few works on mixed-initiative design for specific domains such
as AI based game development [43], the context of the game is fixed and the designer is only being helped with the
detailing of the game rather than finding out what the game should do in the first place. We believe that the next major
advances in mixed-initiative interactions should focus on systems that help find good problems. We believe that our
work takes a major step toward that goal by demonstrating human-computer collaboration for highly unstructured tasks
such as mind-mapping.
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