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Abstract

In this paper, we introduce latent embedded graphs, a simple approach for shape and image interpolation using generative neural
network models. A latent embedded graph is defined as a topological structure constructed over a set of lower-dimensional embedding
(latent space) of points in a high-dimensional dataset learnt by a generative model. Given two samples in the original dataset, the prob-
lem of interpolation can simply be re-formulated as traversing through this embedded graph along the minimal path. This deceptively
simple method is based on the fundamental observation that a low-dimensional space induced by a given sample is typically non-
Euclidean and in some cases may even represent a multi-manifold. Therefore, simply performing linear interpolation of the encoded
data may not necessarily lead to plausible interpolation in the original space. Latent embedded graphs address this issue by captur-
ing the topological structure within the spatial distribution of the data in the latent space, thereby allowing for approximate geodesic
computations in a robust and effective manner. We demonstrate our approach through variational autoencoder (VAE) as the method
for learning the latent space and generating the topological structure using k-nearest-neighbour graph. We then present a systematic
study of our approach by applying it to 2D curves (superformulae), image (Fashion-MNIST), and voxel (ShapeNet) datasets. We
further demonstrate that our approach performs better than the linear case in preserving geometric and topological variations during
interpolation.
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1. Introduction

Interpolating high dimensional data, especially images and
shapes, is a fundamental task with applications in computer vi-
sion as well as geometric modeling such as 3D shape morph-
ing [1], lip image sequence interpolation [2], magnetic resonance
imaging (MRI) sequence interpolation [3], and video frame in-
terpolation [4]. In the past decade or so, advances in genera-
tive neural network models, such as variational autoencoders [5]
(VAEs) and generative adversarial networks (GANs) [6], have
frequently used image and shape interpolations to demonstrate
their efficacy to capture features from high-dimensional data. Re-
cently, few works [7, 8, 9] have shed light on a fundamental is-
sue with such interpolation tasks: the low-dimensional (latent)
feature space captured by the generative model is seldom (if at
all) linear. Therefore, a logical strategy proposed by these works
is to use non-Euclidean metrics to interpolate between the data
points in the latent space. However, these approaches do not ex-
plicitly account for the non-uniform, non-linear, and sometimes
multi-manifold distribution of points in the latent space learnt by
a given generative model.

In this paper, we first demonstrate, with examples, non-linear
and multi-manifold behavior in a generative latent space. Sub-
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sequently, we introduce and systematically evaluate a simple ap-
proach for image and shape interpolation that imposes a topo-
logical structure (a graph) on the latent vectors and simply re-
defines interpolation as a graph traversal process between two
points. We show that this deceptively simple approach results
in a smooth (perceptually consistent) interpolation between two
points sampled from the underlying high-dimensional space of
the data-set. Our approach shows promising preliminary results
for interpolations that require topological variations (e.g. change
of genus from one shape to another).

1.1. The Problem in Detail
The problem of interpolating data (such as images) is typically

translated into that of dimensionality reduction. Given some
samples in an arbitrary space, the basic idea involves computing
low-dimensional codes that capture the core features of the sam-
ple assuming the existence of some common metric that defines
similarity or closeness of the original samples. Once projected on
to the low-dimensional space, the samples can be treated as vec-
tors amenable to simple (typically linear) algebraic operations.
Given two samples in some high-dimensional space, a typical in-
terpolation workflow involves the following pipeline: (1) Project
data from the original space to the latent space; (2) Compute in-
terpolated points linearly between the low-dimensional embed-
ding of the data; (3) Project each interpolated point from the
low-dimensional space back to the original space. We make two
observations here.

Observation 1: . The data sampled from an underlying high-
dimensional space concentrates close to a non-linear low-
dimensional manifold [10]. This observation is supported by the
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Figure 1: We showcase an outline of the Latent Embedded Graphs of a rectangle dataset for graph-based and linear interpolation techniques. We illustrate this for a set

of images containing rectangles rotated by different angles in different frames. Two images are specified at the start and end of the interpolation path. Subsequently, we

train a variational autoencoder and construct a graph on the datapoints (nodes) in the learned latent space. Nodes are represented in steel blue; and graph edges in light

grey.

well-known manifold assumption that forms the basis of man-
ifold learning techniques [1], also, attributes to the success of
deep learning techniques [10]. In principle, manifold learning
techniques are algorithms that “recover a low-dimensional mani-
fold embedded in a high-dimensional ambient space” [1]. The
primary assumption in these methods is that the data can be
represented in a Euclidean sense after learning them. Genera-
tive neural network models, such as Variational Autoencoders
(VAEs) and Generative Adversarial Networks (GANs) [6], are
able to learn a low dimensional latent distribution (latent space)
and sample from this latent space back to the input space to gen-
erate or reconstruct data. These models usually follow a stan-
dard process for data reconstruction — the encoder first maps the
high dimensional input data into a low-dimensional latent distri-
bution; the decoder further samples from this latent distribution
to reconstruct back into the input space. The data distribution
in the latent space can also be controlled by designing special
loss functions [10, 5, 11] that forces it to follow simple distribu-
tions such as Gaussian (normal) or uniform. This allows us to
generate a data sequence that reflects the distribution of the data
set in latent space by sampling from these low dimension simple
distribution. However, real-world datasets do not follow simple
distributions and the latent space might not accurately represent
the real data space. In this paper, we will focus on using variants
of VAEs to learn low dimensional latent distributions.

Observation 2: . While the intrinsic dimension of data is diffi-
cult to estimate and current estimators are not very accurate [12],
it is a common practice to use a sufficiently large dimension for
the latent space (e.g., the bottleneck layer in an autoencoder) to
avoid missing many features. Even if the latent space dimen-
sion is the same as the intrinsic dimension of the data, it is not
necessarily true that interpolations using linear algebraic opera-
tions will necessarily reflect the structure underlying the dataset.
This is simply because the underlying structure of the data can-
not be assumed to be Euclidean. Recent works support this
idea [9, 8, 9] wherein the latent space learnt by generative models
is modeled after some Riemannian Manifold such that distance
between samples is computed as a geodesic path on the mani-
fold. However, studies and one of our own experiments show
that a dataset, when projected onto some latent space, may ex-
hibit multi-manifold property [13].

1.2. Proposed Approach

We propose a simple approach which makes only one assump-
tion: the topological structure imposed on the points in the latent
space must be fully connected such that every point has a non-
empty neighborhood. We call this structure the latent embedded
graph to suggest a “framework” in the latent space that facili-
tates traversal from one point to another. Given two samples in
the original dataset, the interpolation between the samples is im-
plemented as computing and traversing the minimal-length path
on this embedded graph. In order to systematically investigate
this approach, we present several concrete examples using differ-
ent variants of VAEs in order to map the high dimensional data
onto a lower dimension latent space distribution. We specifically
start with a case that results in a multi-manifold point distribution
in the latent space. To capture the (potentially multi-manifold)
structure of the space underlying the data distribution in latent
space, we construct a graph in the latent space. In our exper-
iments, we used the k nearest neighbor (k-NN) graph. k-NN
graphs are generally known to robustly capture neighborhoods
of point distributions [14, 15, 16]. Additionally, we constrain the
choice of the specific value of k to allow for the graph being con-
nected (to ensure a path between any pair of points). In addition,
we study an adaptive graph construction method as outlined by
Lin et al [17]. Finally, we demonstrate several cases of shape and
image interpolation.

We make three contributions in this paper. First, we propose a
general computational framework for interpolation that does not
assume the structure of the data to be either Euclidean or single
manifold. Second, we systematically investigate our interpola-
tion method through two different topological structures (k-NN
and adaptive graphs). Finally, we introduce a new measure to
compute the smoothness of interpolation by leveraging the vari-
ation of image and shape gradients between any two consecutive
interpolated data points. Using our measure and the well-known
earth-mover’s distance metric, we conduct a series of evaluations
of our method in comparison to linear interpolation. Our re-
sults demonstrate that this method results in better interpolation
in comparison to the linear method, especially when capturing
topological changes between the interpolated samples.
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2. Background

2.1. Image and Shape Morphing in Computer Graphics

The problem is interpolation is generally identified with image
and mesh morphing in computer graphics and vision literature.
Traditional image morphing algorithms are based on intensity
blend, warp generation, feature specification, and transition con-
trol methods [18, 19]. More recently, image interpolation tech-
niques such as nearest neighbors, bi-linear and bi-cubic interpo-
lation have been used for image magnification applications [20].
Other recent works in image morphing improve on traditional
methods by finding different ways to automate the morphing pro-
cess (by automatically finding mappings between corresponding
image elements) [21, 22]. However, in most cases, the demon-
stration of interpolation is typically on images that share strong
structural similarity (for example: interpolating human faces or
flowers). Even methods that can interpolate between dissimi-
lar images [22], result in morphed images that contain elements
from only the two input images.

In the case of mesh morphing, the traditional methods involve
the process of finding correspondence between meshes, gener-
ating new mesh connectivity and finding vertex paths between
the meshes [23]. Turk et al. represent the shapes as implicit
functions, and conduct the interpolation between the two func-
tions [24]. Whereas, Zefran et al. are able to generate smooth
rigid body motions by interpolating between the rigid body dis-
placements in 3D space [25]. More advanced approaches in-
clude shape interpolation methods which are based on the Pois-
son equation [26] where the traversal path is treated as a set of
Poisson Equations on a manifold mesh. Recent works that take
a data-driven approach [27, 28] improve upon the quality of the
morphs. However, similar to image morphing, these approaches
focus on a single class of shapes/meshes, such as human poses,
surfaces homeomorphic to spheres in prior works [29], and so
on. In contrast, our approach for interpolation is generative and
leverages recent developments in deep neural networks. This sta-
tistical data-driven strategy allows for generalizing beyond mor-
phing approaches that either rely on the data being from a specific
class (faces etc.) or require specialized algorithms. Furthermore,
we are specifically interested in improving upon the weaknesses
of the current generative deep learning based approaches.

2.2. Manifold Learning for Interpolation

Manifold learning techniques have been used in a wide range
of applications [1] such as shape morphing [30, 1], image recog-
nition [31, 32, 33, 34], and motion analysis [35, 36]. There
are several works that borrow from the data manifold assump-
tion [10] to achieve interpolation for a given data-set. One of
the early works by Bergler et al. [2] showcase a projected image
of a lip onto a 10-dimensional linear subspace and then induce a
non-linear interpolation algorithm by traversing on this manifold.
Similarly, Souvenir et al. [3] developed a method for biomedical
image deformation analysis which incorporates multiple video
data simultaneously in order to facilitate inter-image interpola-
tion by utilizing an image-based manifold. Similarly, for works
discussing 2D shape analysis, Ma et al. [1] represented a class of
closed curves using functions [30], thus, imposing a Riemannian
manifold structure on the curve collection using an elastic met-
ric. The purpose of the metric was to conduct interpolation using
a modified De Casteljau or Aitken-Neville algorithm. There are
works discussing the facial surface representation as an indexed
collection of facial curves. The geodesic distance on the facial

shape manifold was specifically designed and utilized Local Bi-
nary Pattern (LBP) histograms and image graph to generate face
animations from image collections of the same person [37].

2.3. Interpolation with Generative Models
Generative neural network models such as variational autoen-

coders [5] and generative adversarial networks (GANs) [6] pro-
vide a rich toolbox to address some of the problems with the pre-
vious approaches. These models are able to generalize to arbi-
trary shapes and images across a variety of classes. They promis-
ingly showcase the ability to learn low dimensional latent codes
and map them back to their input space, thus, allowing a smooth
interpolation of shapes and images by interpolating in their latent
codes and subsequently decoding the interpolated latent codes
to obtain the interpolants in the original space. For example,
Nguyen et al. [4] use an auto-encoder structure to create a deep
and locally linear embedding to interpolate between the video
frames. Zhu et al. [38] discuss image manipulation methods by
learning a manifold using GANs and constraining the manipula-
tions on the learnt manifold to preserve realistic effects. More
recently, smooth and realistic interpolation has been achieved by
traversing the latent space non-linearly by using the Wassertein
Barycenter Problem to generate the traversal path [39].

In a way, an autoencoder can be considered as a dimensionality
reduction method [40] using artificial neural networks. In that
sense, one can observe the similarity between generative models
and classical manifold learning techniques. An advantage of us-
ing neural network models is that by combining different kinds
of layers, the network can be adapted to different kinds of data.
For example, convolutional layers [41, 42] are highly effective
in detecting features in images, and recurrent layers can be used
for sequential data [43, 44]. Further, there are many variations
of autoencoders with varying approaches towards a latent space
distribution. For instance, Variational Autoencoder [5] learns
a latent variable model for its input data and captures a more
compact latent space than regular autoencoders. On the other
hand, Wasserstein autoencoder minimizes a penalized form of
the Wasserstein distance between the model distribution and the
target distribution [45]. Alternatively, adversarial autoencoders
combine the adversarial network and autoencoders, and have the
ability to get better regularized latent code [46]. These varia-
tions of autoencoders can be used to learn a lower dimensional
manifold of arbitrary high dimensional data, and has been dis-
cussed extensively in existing works for the geometric modeling
domain [47, 48, 49, 50, 51, 52] . One of the seminal works in
this area by Yumer et al. [51] demonstrates how VAEs can be
used to encode parametric shapes in order to enable a new class
of procedural geometric modeling workflow. We observe that in
principle, learning a lower-dimensional embedding for a higher
dimensional data allows for one to perform algebraic operations
in the lower-dimensional space (the latent space) and project the
outputs of these operations back to the original space. Interpola-
tion can be regarded as one of such algebraic operations.

2.4. Our Approach
Our work draws inspiration from recent works [7, 9, 8] that

discuss and treat the learned manifolds of generative neural net-
work models as Riemannian manifolds. They further, develop
algorithms to find the geodesics between two points on the mani-
fold, thus, enabling interpolation along this path. The key differ-
ence between these works and ours is that in addition to consid-
ering the non-linearity of the latent spaces learnt by generative
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models, we also remove the single manifold assumption made in
prior works.

3. Methodology

In our work, we aim to systematically explore the interpolation
on the latent embedded graphs of a variety of datasets using gen-
erative neural network models to learn their latent space. A vari-
ety of generative neural network models exist [53] such as vari-
ants of autoencoders, generative adversarial networks (GANs)
and so on. While our approach is agnostic to a specific genera-
tive model, we chose the autoencoder as our overarching archi-
tecture for this work. In contrast to GANs, autoencoders allows
us to directly query the latent embedding for a given sample in
the original space using the encoder. Therefore, they offered an
intuitive way to conduct systematic studies for a wide range of
inputs. In this section, we describe our methodology for latent
embedded graph based interpolation and define the metrics for
the experimental evaluation of our approach.

3.1. Overview
Given a dataset in its original dimension, X = {x0, x1, ..., xn},

and a pair of specified data points (xs, xt) from the dataset we
compute the interpolated points in the following steps:

Step 1. We construct a probabilistic Autoencoder, consisting
of an encoder (φ : X → F and a decoder ψ : F → X. The en-
coder φmaps the dataset X into a low-dimensional latent space
distribution. We refer the encoded data set as Z = {z0, z1, ..., zn}

and the encoded data points as (zs, zt).

Step 2. We construct a neighborhood graph to capture the
geometric structure of the encoded dataset G(V, E), where V
represents the set of vertices and E represents the set of edges
between two vertices.

Step 3. We find the shortest path P((vs, vt)) = {ēs1, ē12, ..., ēpt}

between the encoded pair of data points (zs, zt).

Step 4. We linearly interpolate on each ēi j of the path and get
a set of interpolated points Z̄ = {z̄0, ..., z̄s}.

Step 5. We use the decoder to reconstruct the interpolated
points to the original space X

The method used in each step is further discussed in detail in
subsequent sections. We specifically look into the methods that
help us construct: (1) the low-dimensional latent space from the
original dataset, (2) the latent embedded graph that captures the
structure of the encoded data, and finally, (3) the path and in-
terpolants which represent smooth transition between any two
nodes from the constructed graph.

3.1.1. Learning the Latent Space
We design different architectures of autoencoders for different

datasets based on the representation and content of the dataset.
For instance, we developed a synthetic dataset of geometric
curves (wherein the representation is geometric) for which we
used fully-connected dense layers. On the other hand, for image
data, we explored both dense layers (for vector representations
of images) and 2D convolutional layers which is an effective and
memory efficient way to train images [54]. A similar approach

(a) k = 1 (b) k = 2 (c) k = 3 (d) adaptive k

Figure 2: Illustration of k nearest neighbor (k-NN) graphs with (a) k = 1; (b) k =

2 (kmin); (c) k = 3; and (d) adaptive k.

was used for 3D voxel data using 3D convolutional layers. Spe-
cific architecture details for each experiment we conducted are
provided in the following sections (Section. 4).

In addition to the architecture of the autoencoder, the choice
of the dimension of the latent space is also important. Ideally,
it should be equal to the intrinsic dimension of the data in order
to capture the inherent structure [12]. However, intrinsic dimen-
sion estimate is still an open research problem, with many meth-
ods being introduced lately [12, 55]. In our experiments, for the
datasets generated by us, we already know the intrinsic dimen-
sion (id) of the datasets, and the estimated latent space dimension
is chosen as a number that is equal or larger to it (eg. the id for
the 2D superformula data is 3). For cases where we did not know
the id, we developed the model based on a trial and error method.

3.1.2. Graph Construction
Graph construction plays a significant role in our method be-

cause it is the basis for generating the interpolated points. The
most widely used neighborhood graph construction methods in-
clude the k-nearest neighbors algorithm and the ε-close graph
algorithm. ε-close graph algorithm can always construct a sym-
metric graph, but it also ends up creating too many edges when
the data is densely distributed. On the other hand, the k-nearest
neighbor algorithm does not always produce a symmetric graph,
but the number of edges can be controlled. Therefore, in this
work, we choose k-nearest neighbor algorithm to construct the
graph in the latent space to make sure the model is capturing the
distribution of the data while maintaining a reasonable amount
of the edges being produced. Here, the selection of k is impor-
tant for two main reasons. First, if k is too large, it may lead to
smoothing or elimination of small-scale structures in the man-
ifold, which hurts the graph’s ability to capture the geometric
structure of the distribution thus makes the interpolations to be
non-sample-aware. Second, if k is too small, it results in dis-
joint graphs [56]. To this end, Carey [57] proposed metrics to
evaluate the graphs used in manifold learning techniques and fur-
ther pointed out that the diameter of the graph suddenly changes
when k becomes too large. We explore two different strategies to
resolve the issue of the selection of k as mentioned below.

Strategy 1: kmin-NN Graphs. The first strategy is when the value
of k ∈ Z+ is fixed for the entire graph. Here, we simply begin
with our original assumption that the graph must be connected.
Therefore, our choice of k is the minimum possible positive in-
teger for which the graph is connected. We will call this the
kmin-NN graph.

Strategy 2: Adaptive k-NN Graphs. The second (and more in-
volved) strategy is to select k adaptively so as to avoid long edges
and extraneous connections between points where using Eu-
clidean distance would not be appropriate. Typically, manifold-
based methods have been introduced to achieve this [58, 17, 59]
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Figure 3: Our interpolation pipeline: (a) Image A and Image B are the inputs to the encoder to obtain the respective embeddings A′ and B′ in the latent space; (b)

Two vertices A′′ and B′′ on the latent embedded graph that are closest to A′ and B′, respectively, are found (red path highlights the edges E(A′, A′′) and E(B′′, B′)) (c)

shortest path PS (A′′, B′′) (blue path) between them (A′′ and B′′) is computed using a piece-wise linear approach along the constructed graph. (Green points are existing

vertices of the graph); (d) The shortest path is re-sampled to obtain the interpolants (yellow points) which are provided to the decoder to obtain interpolated images

and to improve the quality of the graph. It is found that the adap-
tive graph decreases the number of edges while capturing the dis-
tribution properties of the data (Figure 2). Therefore, we utilize
and follow the adaptive graph construction strategy described by
Lin at al. [17] in this work, to build the Latent Embedded Graph.
The main steps described in their construction procedure are as
follows:

Step 1. Search for k-NNs for our original dataset X =
{x0, x1, ..., xn}, denoted as k-NN (xi).

Step 2. Construct a k-NN graph using k ≥ kmin to ensure that
each xi is connected to each of its k-NN.

Step 3. Identify the “visible” neighbors VN(xi) = {y ∈
k−NN(xi)|〈xi−z, y−z〉 ≥ 0,∨z ∈ k−NN(xi)} of xi and maintain
connections only between them; eliminating any connections
between the “invisible” neighbors. Here, y is a visible neigh-
bor of xi if there is no other point z between them i.e. in the
“visible” neighborhood of xi.

Step 4. Remove the short-circuit neighbors, which usually
produce longer edges than others, thus, obtaining a safe neigh-
borhood devoid of edges abruptly affecting the k-NN graph
topology. Using PCA, eliminate the neighbors that affect the
local linearity.

It is important to note here that adaptive graph construction
method takes relatively more time than constructing a fixed con-
nected graph. Specifically, the complexity for constructing a
fixed k-NN graph is O(|V |2(n+k)), whereas for the adaptive graph
it is O(|V |3(K + log(V)) if using the graph diameter to chose the
reasonable value of k. Here, |V | is the number of vertices, and n
is the dimension of the data. Our approach adopted from Lin et
al. [17] has the complexity of roughly O(|V |2(n + K)).

3.1.3. Interpolation Strategy

Finding the shortest path between two nodes in a manifold is
an essential step in traversing and hence, interpolating on the
manifold structure [1]. Even though we do not assume a sin-
gle manifold structure in this work, the shortest path strategy for
interpolation still holds. For a discrete topological structure such
as our latent embedded graph, the shortest graph path between
two nodes serves as a counterpart for the geodesic. Many meth-
ods have been introduced to compute such a path efficiently. For
example, a widely used method, Floyd-Warshall algorithm [60],
is suitable for a dense graph where the number of edges is close
to the maximum number of vertices. In our work, we adopt Di-
jkstra’s algorithm [61] for one main reason: the graph represen-
tation of the manifold is always a sparse graph since the k of
our adaptive k-NN graph is usually much smaller than the total
number of vertices.

In order to interpolate between two new data points, say A and
B which are not present in the original dataset, we first use the en-
coder to compute their latent embeddings A′ and B′ respectively
(Figure 3(a)). We then find two vertices A′′ and B′′ on the latent
embedded graph that are closest to the newly embedded points A′
and B′ respectively (Figure 3(b)). In our next step, we compute
the shortest path, PS (A′, B′), between A′′ and B′′ by sequentially
concatenating the edge E(A′, A′′) with path PS (A′′, B′′), followed
by edge E(B′′, B′) (Figure 3(c)). Here, PS (A′′, B′′) is the shortest
path between A′′ and B′′ that is readily available from the la-
tent embedding graph. As a result, PS (A′, B′) is a piece-wise
linear approximation of the geodesic between A′ and B′ (our
new embedded points from the data points A and B). Note that,
once computed, PS (A′, B′) can be arbitrarily re-sampled based
on however many interpolants that are needed. In our work, we
perform equidistant re-sampling of PS (A′, B′) (Figure. 3(d)). Al-
ternately, it is also possible to use PS (A′, B′) to generate high-

5



resolution polynomial curves [62, 63].

3.2. Evaluation Metrics
While there are a few metrics that have been proposed to quan-

titatively measure the quality of an interpolation, there are some
key considerations that we need to address in our case. First
and foremost, we note that we are specifically interested in how
the interpolation affects the shape (both geometry and topology).
Second, we desire the interpolations to be smooth in the sense
that there are minimal abrupt changes or transitions between two
consecutive interpolated images. More importantly, it is neces-
sary for the interpolations to be complete, which means that for
two input images with the same topology (e.g. both homeomor-
phic to a disc), the topology of the interpolated images should
be preserved. Finally, in order to have meaningful interpolations,
we require perceptually consistent transitions between the inter-
polated images. We experimented with several metrics available
in literature [7, 8, 9] and chose the Earth Mover’s Distance [64]
based on its consistency. We also developed our own evalua-
tion metric, the Gradient Projection Metric (GPM), that encodes
shape changes across the interpolated images.

The Earth Mover’s Distance (EMD), also known as the
Wasserstein Distance, calculates the distance between probabil-
ity distributions and is used to compare visual similarities be-
tween images and voxels [64, 65]. We specifically use the EMD
variants described in [66, 67], between every two consecutive
frames of the interpolations. For smooth transitions, the EMD
values will be fairly small, and will show larger values for abrupt
transitions. It will also show larger values when there’s loss of
information between frames, hence satisfying our desired charac-
teristic of complete interpolations. Lack of persistent transitions
may correspond to consecutive EMD values to be very similar,
showing a smooth curve when plotted over all the interpolations.

Consider a pair of images It and It+1 at time frames t and t + 1,
respectively, each having a size of m × n pixels. The Gradient
Projection Metric (GPM) is computed as follows:

Step 1. Compute gradient vectors Vt(i, j) and Vt+1(i, j) at
pixel (i, j).

Step 2. Compute the difference between the product of the
vector magnitudes and their dot products.

G(i, j) = (| Vt(i, j) | × | Vt+1(i, j) |) − st+1
t (i, j)

where st+1
t (i, j) is the dot product of Vt(i, j) and Vt+1(i, j).

Step 3. Calculate the root mean square (RMS) of this dif-
ference and the value we obtain from this, is our evaluation
metric.

GRMS = (
1
N

(
m∑

i=0

n∑
j=0

G(i, j))2)
1
2

where, N = m × n

The aforementioned metric is used primarily for image-based
datasets (§ 4.2.2, § 4.3). However, for 3D voxel datasets (§ 4.4),
we compute 3D gradient vectors in the first step. GPM is based
on the rationale that it will produce smaller values for smooth
transitions between consecutive interpolations. This is due to
the reduced movements (rotations) of pixels/voxels between the
frames. We expect larger values for cases with abrupt transitions

between two interpolations. This will help us highlight incom-
plete transitions when the pixel/voxel values in consecutive in-
terpolations change and affect the gradient vector values, thus,
being a good indicator for a complete and perceptually smooth
interpolation process. For our image and 3D voxel based exper-
iments, GPM is calculated over hundred interpolations for each
interpolation method in the experiments, thus, allowing us to ob-
serve the transitions in greater detail.

4. Experiments and Results

We conduct several experiments on different image and shape-
based datasets, to evaluate our latent embedded graph meth-
ods compared to linear interpolation (current standard in latent
space interpolation for generative models). To better under-
stand the distribution of data in the latent space, we generate
two types of shape datasets using the parametric equation for Su-
performula [68]. This allows us to generate a variety of shapes
parametrically, making the parameters a learnable feature of the
dataset. Additionally, we conducted experiments on the Fashion-
MNIST [69] and ShapeNet [70] datasets, which provide a wide
variety of data to evaluate our interpolation methods.

Linear Adaptive Kmin

Figure 4: Latent space visualization for the the curve-based superformula dataset

generated in § 4.1, with the three interpolation paths. Multi-manifold property

of the latent space can be observed in this figure. Also, different views of the

structure in the bottom row.

4.1. 2D Superformula: Geometric Shape Interpolation
Superformula [68] is a generalization of the superellipse and

its equation is given below:

r(φ) =

(∣∣∣∣∣cos( m1φ
4 )

a

∣∣∣∣∣n2

+

∣∣∣∣∣ sin( m2φ
4 )

b

∣∣∣∣∣n3) 1
n1

x = s × r(φ) × cos(φ)

y = r(φ) × sin(φ)
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Experiments
Superformula

(Polygonal)
Superformula (Image) Fashion-MNIST ShapeNet

Training Dataset 28,282 4,000 28,282 60,000 3991

Data

Representation

Polygons (1000

2D points per

polygon)

Image

(128 × 128

pixels)

Image

(128 × 128

pixels)

Image (28 × 28

pixels)

Voxels

(32 × 32 × 32

voxels)

Autoencoder

Model
AE CVAE CVAE AAE CVAE

Encoder Arch. 4 FC 5 Conv, 4 FC 5 Conv, 4 FC 3 Conv, 1 FC 4 Conv, 2 FC

Latent Space Dim. 3 3 3 100 100

Decoder Arch. 4 FC 4 FC, 6 Conv 4 FC, 6 Conv 1 FC, 3 Conv 2 FC, 4 Conv

Table 1: A summary of all experiments conducted in this work. The table highlights: Size of the Training Datasets, Type of Data Representation, Type of Autoen-

coder models used, Encoder Architecture, Latent Space Dimension, and Decoder Architecture. (Abbreviations: AE: Autoencoder; CVAE: Convolutional Variational

Autoencoder; AAE: Adversarial Autoencoder; FC: Fully Connected Layers; Conv: Convolutional Layers)

(a)

(b)

(c)

Figure 5: Interpolation results for experiments on curve-based superformula dataset: (a) Linear interpolation between two given curves is jittery; Interpolation along

the: (b) k-NN graph with kmin generates smooth and wide intermediate curves; (c) the adaptive k-NN graph generates smooth and narrower intermediate curves

Here, in the above equation, r and φ are the radius and angle
of the superformula shape respectively. The parameter m defines
the number of corners of the superformula shape and is set to an
integer value to obtain complete polygons. Parameters n2 and
n3 determine if the shape is inscribed or circumscribed and pa-
rameter n1 can make the corners sharper or flatter and the edges
straight or curved. Parameters a and b are usually kept constant
and equal to 1, giving us circular shapes. We further introduce
parameter s that can make the shapes narrower or wider. Many
shapes can be generated by changing the parameter values, and
we use this property of the superformula to generate multiple
datasets by varying different parameters. This allows us to ob-
serve and have a better understanding of the differences in the la-
tent space structures for the different datasets. We discuss these
experiments in further detail in the following sections.

Dataset. For this experiment, we generate a new dataset of
28, 282 superformula shapes, represented as curves. Each curve
is a sequence of points (coordinates) and is assumed to be closed.
Here, the shapes are generated by changing the parameters s, n1

and m (here, m1 = m2 = m). Specifically, the value of s is varied
from 0.1 to 1.0 and n1 from 0.1 to 10. Parameter m is allotted
four values: 4, 6, 8 and 10. The other parameters are kept con-
stant and are given the following values: a = b = 1.0; n2 = n3 =
1.7.

Model Architecture. We train a simple autoencoder on our
dataset, where the encoder contains four fully connected layers,
and the decoder mirrors this structure. Since three parameters are
being changed to generate the dataset, its intrinsic dimension is
3 and therefore we set the latent space dimension to 3. We use
a simple autoencoder for this experiment due to the simplistic
nature of the dataset.

Findings. Since the value of m is set to 4 discrete values, the
latent space structure of the dataset should ideally be discrete
too. However, when s and n1 are large enough (i.e., the value
of s is close to 1.0 and n1 is close to 10.0), the generated shapes
are ellipsoidal for all values of m. Therefore, each class of the
shapes may correspond to a single manifold structure and they
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(a)

(b)

(c)

Figure 6: Interpolation results for experiments on image-based superformula dataset (with 2 variables): (a) Linear interpolation generates a few incomplete images;

Interpolation along: (b) k-NN graph with kmin generates complete but narrow images in the beginning; (c) adaptive k-NN graph generates complete and smooth images

Linear Adaptive Kmin

Figure 7: Latent space visualization for the image-based superformula dataset

(with 2 variables) generated in § 4.2.1. The three interpolation paths are shown

along with the different views of the structure

all connect at a seam, where the shapes resemble circles, forming
a multi-manifold structure (Figure 4).

We generated interpolations with three different methods on
this multi-manifold structure, namely, linear, graph based on k-
NN graph with kmin, and graph based on adaptive k-NN graph.
The linear interpolation path between two points on alternating
manifolds cuts through an inner manifold (green line in Figure 4),
and this intersection corresponds to a different class of shape. We
observe this in the intermediate interpolated shapes, where the
initial four cornered shape interpolates to a ten cornered shape
and finally to the six cornered shape at the end (Figure 5(a)). The
jittery appearance of thelinearly interpolated shapes is likely be-
cause of the fact that the straight line joining the two end points
largely does not pass through the multi-manifold thereby missing

Linear Adaptive Kmin

(b)

(a)

Figure 8: Evaluation of the interpolated images generated in § 4.2.1: We observe

higher peaks in (a) Earth Mover’s Distance and (b) Gradient Projection Metric

for linear interpolation due to the incomplete interpolated images.

most of the latent space. In comparison, the intermediate shapes
for our graph based methods are smoother boundaries. More im-
portantly, both the kmin and adaptive k-NN based interpolations
traverse the embedded graph structure thereby passing the seam
at which the four classes of shapes meet (Figure 4). As a result,
we note that the interpolated shapes in the middle of the sequence
are ellipsoidal (Figure 5(b) and (c)) as should be expected. Fur-
thermore, notice that the difference in the path traversed by the
two interpolation methods results in the different aspect ratios of
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the interpolated shapes, where the interpolated shapes for the kmin
approach are comparatively wider than adaptive k-NN.

4.2. 2D Superformula: Image Interpolation

We generated two image-based datasets of the superformula
shapes and conducted experiments on them.

4.2.1. Parametric Variation of s, n1

Dataset. For our first experiment on the shape images, we gen-
erate a new image-based dataset of 4, 000 superformula shapes
by varying the parameters s and n1 from 0.1 to 1.0, individually.
The other parameters are kept constant and are given the follow-
ing values: a = b = 1.0; m1 = m2 = 4.0; n2 = 1.7; n3 = 1.7.

Model Architecture. We use the generated dataset to train a
convolutional variational autoencoder. The architecture of the
encoder includes five convolutional layers followed by four
fully-connected layers, while the decoder contains four fully-
connected layers followed by six convolutional layers, all but last
of which are followed by up-sampling layers. The latent space
dimension is set to 3, as the data is being varied over two param-
eters, allowing us to visualize it in 3D space.

Findings. For this experiment, we intentionally chose our start-
ing and ending images such that the latent code corresponding
to one of the images lies far from the majority of the other data
points (Figure 7). A major portion of the linear interpolation
path, traverses in regions containing very few data points towards
one end of the interpolation. This likely results in the intermedi-
ate interpolated images to be missing pixels at the concave parts
of the star shapes (Figure 6(a)). In comparison, we observe that
the interpolations for both the graph based methods do not have
the aforementioned abrupt artifacts. We believe that this is a di-
rect outcome of graph traversal. Furthermore, in this specific
example, we also note that the kmin and adaptive k-NN graph re-
sult in very similar interpolations. This is can be attributed to
the observation that the minimal paths for both these graphs have
an extensive overlap (purple and orange lines in Figure 7). The
evaluation metrics support our results as both EMD and GPM
show sharp peaks for the linear interpolation method that corre-
sponds to the incomplete shapes (Figure 8). The EMD plot for
the interpolations on the adaptive k-NN graph remains fairly flat
through the interpolation transitions and shows a downward de-
cline in the GPM plot signifying smooth transitions. The plots
for the interpolation on the k-NN graph with kmin follow a simi-
lar trajectory, however, a few short sharp peaks can be observed
that maybe due to transitions from one shape to another.

4.2.2. Parametric Variation of s, n1,m
Dataset. We generated a new dataset of 28, 282 images of super-
formula shapes, by changing the parameters s, n1 and m similar
to the dataset preparation in Section 4.1. The value of s was var-
ied from 0.1 to 1.0, n1 from 0.1 to 10 and the values allotted to m
were: 4, 6, 8 and 10.

Model Architecture. We trained a convolutional variational au-
toencoder on this dataset with the same architecture as the previ-
ous experiment (Section 4.2.1). We set the latent dimension to 3
corresponding to the 3 parameters generating the dataset.

Findings. The two shape images we choose to interpolate be-
tween are similar to the two shapes we chose in Section 4.1, al-
lowing us to observe the differences between the image-based
and geometric-based interpolations. The path traversed by the
linear interpolation does not pass through any surfaces of the la-
tent space structure (green line in Figure 10), and hence we ob-
serve that the intermediate interpolated images do not resemble
any other specific shapes. Instead, the transition between the two
given images is quite fuzzy and abrupt, and some of the inter-
mediate images are incomplete (Figure 9(a)). Our graph based
approaches however, traverse a much longer path along the em-
bedded graph structure, (orange and purple lines in Figure 10)
and result in smoother, complete and consistent transition from
the initial to the final image (Figure 9(b) and (c)). We also ob-
serve that results of the graph based methods, are quite similar to
the ones in Section 4.1 in terms of transition, as they interpolate
from a four cornered shape to a circular shape and then finally
to a six cornered shape. We do not see a similar comparison be-
tween the two linear interpolations, as they share no similarities
in terms of the interpolated shapes.

We further evaluate the quality of the interpolations using the
EMD and GPM (Figure 11). It is shown that linear interpolation
method tends to peak near the halfway point (Figure 11, green
curve), which corresponds with the incomplete interpolated im-
ages that are observed during the transition from one shape to an-
other. Apart from these peaks, the curve remains quite flat in both
the evaluation methods, as there is very little transition between
the shapes. The graph based methods show a different trend: they
peak towards the initial and final transitions in the EMD plot, and
remain fairly flat during the middle transitions. This occurs due
to the fairly quick transitions in the initial and final phases of in-
terpolation, i.e. from a 4 cornered star to a square initially and
from a hexagon to six cornered star towards the end. The plot for
GPM shows the graph based methods to have a fairly flat slope
overall as the values range from 0.15 to 0.25, though, on aver-
age they have greater values than linear interpolation as there is
a continuous transition in the graph based approach, which leads
to reduced similarity between consecutive interpolations.

In our experiments so far, we observed that for cases where
there was a considerable difference between the path lengths for
the kmin and adaptive k-NN graphs (Figures. 4 and 10), the adap-
tive k-NN graphs typically admitted shorter paths. While we do
not currently have a theoretical basis for this, we will use the
adaptive k-NN approach in the rest of the experiments.

4.3. Fashion-MNIST
We conduct experiments on the Fashion-MNIST dataset [69]

to evaluate performances of the different interpolation methods.

Dataset. Fashion-MNIST is a database consisting of fashion
products, offering more complexity than the commonly used
MNIST dataset [71]. It consists of a training set of 60, 000 exam-
ples and test set of 10, 000 examples. Each example is a grayscale
image of size 28 × 28 and belongs to one of ten labeled classes.

Model Architecture. For our experiment on the Fashion-MNIST
dataset, we construct and train an adversarial autoencoder [46],
where the encoder-decoder architecture behaves as the genera-
tor and we have a discriminator that differentiates between the
real and fake images. The latent space distribution here is guided
by the adversarial process, unlike the KL-Divergence in Varia-
tional Autoencoder. This allows us to generate higher quality
interpolated images. The generator section is trained first and
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(a)

(b)

(c)

Figure 9: Interpolation results for experiments on image-based superformula dataset (with 3 variables): (a) Linear interpolation generates fuzzy intermediate images

during transition between shapes; Interpolation along: (b) k-NN graph with kmin and (c) adaptive k-NN graph generate wide variety of complete shape images

Linear Adaptive Kmin

Figure 10: Latent space visualization for the image-based superformula dataset

(with 3 variables) generated in § 4.2.2. The three interpolation paths are shown

along with the different views of the structure

the discriminator section is trained next. The encoder consists
of three convolutional layers, each followed by a batch normal-
ization layer, and ends in a fully-connected layer. The decoder
mirrors this structure. The discriminator consists of four convo-
lutional layers. The latent space dimension is arbitrarily set to
100, owing to the higher complexity of the dataset compared to
the superformula shape datasets.

Findings. Our experiment with Fashion-MNIST showcases a
very critical aspect of interpolation, namely, topological tran-
sition across the interpolants. When comparing linear and our

Linear Adaptive Kmin

(b)

(a)

Figure 11: Evaluation of the interpolated images generated in § 4.2.2: We observe

high peaks in (a) Earth Mover’s Distance, and (b) Gradient Projection Metric

plots for graph-based approaches at the start and end of the interpolation transi-

tions due to the quick transitions to new shapes. Peaks for linear interpolation

occurs at the fuzzy transition between shape.

graph-based interpolation, we observe a clear difference between
the two. For linear interpolation (Figure 12(a)), we observe vir-
tually no initial change in the shape of the handbag (row 1) fol-
lowed by a pixel-by-pixel blending (rows 2-3) between the hand-
bag (genus-1 — a topological annulus) and the shoe (genus-0 —
a topological disc) culminating in an almost quasi-static change
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(c) Evaluation using EMD

Linear Adaptive Linear Adaptive

(d) Evaluation using GPM

(a) Example of  linear interpolation (b) Example of interpolation using graph traversal

Experiment on Fashion-MNIST Dataset

Figure 12: Interpolation and evaluation results for the Fashion-MNIST dataset. Top row: (a) linear interpolation generates fuzzy and slow transition between the

handbag and shoe (pink box) and (b) adaptive k-NN graph-based approach generates topological transition from the handle of the hand bag to the tongue of the shoe

(cyan box). Bottom row: Evaluation using (c) EMD and (d) GPM plots favor linear interpolation due to non-consistent transitions.

in the shoe (row 4). The qualitative observations are supported
by the EMD metric (Figure 12(c)) wherein we observe a low-
slope increase in the values (signifying row 1 of Figure 12(a))
followed by a dip (rows 2 and 3 of Figure 12(a)) and culminating
in a gradual descent (row 4 of Figure 12(a)).

On the other hand, the graph-based interpolation (Figure
12(b)) shows a discernible change of shape in the body of the
handbag (rows 1 and 2) while maintaining the genus-1 topology
followed by a smooth topological transition seen as the contrac-
tion of the handle of the handbag (row 3) culminating in a gradual
and discernible change of shape of the shoe (row 4). These quali-
tative observations are also supported by the EMD metric (Figure
12(c)) wherein we observe a dip in the values (signifying rows 1
and 2 of Figure 12(b)) followed by a sharp rise and dip during
the topological transition (row 3 of Figure 12(b)) and culminat-
ing in a gradual ascent (row 4 of Figure 12(b)). To the best our
knowledge the topological transition of genus-1 to genus-0 (han-
dle contraction in row 3 of Figure 12(b)) is currently not possible
in any known generative neural network based interpolation.

We note here that there is a need for a deeper analysis of
such topological transitions through a controlled study of care-
fully constructed datasets. Secondly, the evaluation of topolog-
ical shifts also needs extensive future research. The EMD met-
ric (Figure 12(c)) relies on the pixel-wise similarity between two
consecutive images in the sequence. Secondly, the plots for GPM
are quite similar for both of the interpolation methods with the
graph-based method showing higher values and sharper peaks,
indicating a consistent transition between shapes (Figure 12(d)).
In fact, we specifically note here that the EMD and GPM metrics
are likely not suitable for evaluating topological shifts in images
and further research is needed on new metrics.

4.4. ShapeNet
We conduct experiments on the ShapeNet dataset to evaluate

the performance of our interpolation method on 3D shapes.

Dataset. ShapeNet [70] is a large-scale dataset of 3D models
from a wide variety of categories. The complete dataset consists
of more than 3,000,000 models and 3135 categories. For our ex-
periments, we used a subset of the ShapeNet dataset consisting
of 3991 shapes over 10 categories which include: chairs, tables,
beds, bathtubs, bookshelves, dressers, monitors, nightstands, so-
fas and toilets. The voxel data of size 32×32×32 for each of the
shape was used to train our models.

Model Architecture. We constructed a convolutional variational
autoencoder to train on our ShapeNet dataset. The encoder archi-
tecture included four 3D convoluted layers, and a fully connected
layer, each of which was followed by a batch normalization layer.
The decoder consisted of two fully connected layers, followed
by four 3D transposed convolutional layers, and one 3D convo-
lutional layer at the end, with a batch normalization layer after
each of these layers. The latent space dimension was set to 100
owing to the complexity of the dataset.

Findings. We show two examples comparing the linear interpo-
lation results with our graph based based approach on the learned
latent space. In the first example, we interpolate between a ta-
ble and a sofa (Figure. 13). We observe that the results from
the linear interpolation method disintegrate from the initial to
the final shape without any perceptually meaningful intermedi-
ate shapes. While the EMD and GPM plots favor this due to the
lack of change in the interpolated shapes, we do not generate any
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(a) Example of linear Interpolation on ShapeNet (b) Example of  interpolation using graph traversal on ShapeNet

(c) Evaluation using EMD (d) Evaluation using GPM

Linear Adaptive Linear Adaptive

Figure 13: ShapeNet Example 1: Interpolation and evaluation results for the ShapeNet dataset. Top row: (a) linear interpolation generates incomplete and less

meaningful interpolations between the table and sofa and (b) adaptive k-NN graph-based approach generates consistent and meaningful transitions from the table to a

dresser, to a bookshelf and finally the sofa. Bottom row: Evaluation using (c) Earth Mover’s Distance and (d) Gradient Projection Metric. The EMD plot shows two

sharp peaks for the graph-based approach due to the transitions to the dresser and the sofa. GPM plot favors linear interpolation as its peaks are comparatively shorter.

intermediate shapes with either of the features of the table or the
sofa. In our graph based approach, however, we observe the ta-
ble changing to an intermediate shape that looks like a dresser,
further changing to a form that vaguely resembles a book shelf
and finally to a sofa. Our approach generates different and more
meaningful interpolated shapes compared to the linear interpo-
lation methods. The peaks in the EMD plot indicate the shift
between different classes of shapes (e.g. sofa to night-stand).

In our second example, we show an L-shaped sofa interpolat-
ing to an office chair, using both of the interpolation methods
(Figure. 14). Similar to the previous example, we can see the
linear interpolation method does not produce any perceptually
meaningful results. The sofa simply loses its shape to an un-
recognizable form, which then turns into the shape of a chair in
a disorderly fashion. Our approach on the other hand, interpo-
lates the sofa to a small desk like shape, then to a smaller chair
and finally to the office chair. This shows a perceptually mean-
ingful and consistent transition between shapes that is lacking in
the linear interpolation method. As our interpolation approach
traverses along the latent embedded graph, we can see how the
traversal path explores the perceptually similar shapes, such as
the changing sizes of the chair, and the flattening and lengthening
of the sofa. The EMD plot shows a sharp peak for our approach
when the shape of the sofa becomes flat and gradually converts
to a chair. The peak for the linear interpolation method coincides
with the fuzzy transitions between the shapes of the sofa and the
chair.

In both examples, it is important to note that while both inter-
polation methods lead to shapes with several disconnected voxels
(row 3 in Figures 13(b) and 14(b)), latent embedded graph still

offers meaningful interpolations compared to the linear interpo-
lation approach.

5. Limitations & Future Work

5.1. Evaluating Interpolation Quality
A visual inspection (as is nominally practiced in several sim-

ilar works) of the results show that the latent embedded graph
method is effective in generating reasonable interpolations. How-
ever, the metrics that we used, either from existing literature
[64, 65] or our GPM metric, to quantify the interpolation did not
always reflect these visual inspections specifically for interpo-
lations that involved topological shifts. We specifically observe
this in the Fashion-MNIST experiment, where the EMD plot for
the adaptive k-NN graph shows a sharp peak during the transi-
tion from a handbag to a shoe (Figure 12). The sharp peak of
the plot corresponds to the interpolated images where topologi-
cal change occurs from the handle of the handbag to the tongue
of the shoe (Figure 12). Linearly interpolated images, however,
do not seem to show any topological and perceptual transitions,
but score well in the evaluation metrics as the interpolated images
remain fairly similar to one another with gradual appearance and
disappearance of gray pixels that do not show any meaningful
interpolations. Lastly, while our polygonal superformula dataset
showed some interesting comparisons between linear and graph-
based interpolations (Section 4.1), we did not conduct a quan-
titative evaluation to compare the two cases. While there are
several potential methods that could be used (e.g. deformation
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(a) Example of linear Interpolation on ShapeNet (b) Example of  interpolation using graph traversal on ShapeNet

(c) Evaluation using EMD

Linear Adaptive Linear Adaptive

(d) Evaluation using GPM

Figure 14: ShapeNet Example 2: Interpolation and evaluation results for the ShapeNet dataset. Top row: (a) linear interpolation generates incomplete and fuzzy

interpolation transitions between the L-shaped sofa and office chair; (b) adaptive k-NN graph-based approach generates a perceptually consistent transition from the

sofa to a small table, then to a small chair and finally to the office chair. Bottom row: Evaluation using (c) Earth Mover’s Distance and (d) Gradient Projection Metric

shows the EMD plot favoring linear interpolation due to lack of continuous transitions. The GPM plot shows similar results for both approaches.

fields, curve energy etc), it is currently difficult to assess which
metrics would capture perceptual preferences for transitions from
one shape to another.

5.2. Capturing Topological Shifts in Interpolation

While our method shows promising results for capturing topo-
logical shifts, we note that this was incidental, in that we had not
specifically trained our generative models to capture topological
shifts. Having said that, our latent embedded graph approach
captured the topological transitions well atleast for the Fashion-
MNIST experiment. However, we did not achieve the same suc-
cess for voxel interpolation. In the case of the ShapeNet dataset,
we still observe artifacts such as disconnected components while
traversing between two classes of shapes (for example in row
3 in Figure. 14 (b)). Perhaps it maybe useful to explore dis-
entagled representations and class-conditional training for such
datasets. In general, a deeper investigation of smooth topologi-
cal transitions is needed similar to our superformula experiment,
wherein, more properly curated datasets could be generated and
tested specifically to characterize topology shifts while training
the generative model itself.

5.3. Graph Construction Strategies

Our choice for using k-NN based graphs was generally influ-
enced by their use in current manifold learning methods. How-
ever, there are several other graph construction strategies (e.g.
threshold-graphs, rapidly-exploring random trees, etc.) that may

be useful for specific data distributions. For instance, a novel bio-
inspired method based on space colonization (leaf venation)[72]
could be used for graph construction where the similarity-flow
along the paths is of importance. There are other options such as
rapidly-exploring random trees [73] that belong to the category
of incremental graph generation and could be useful for certain
applications.

There are several interesting factors that may affect the graph
construction strategy. The first is the density of the points sam-
pled in the latent space. Imposing the k-NN graph (or, for that
matter, any reasonable discrete topological structure on the point
set) allows us to approximate the geodesic in a piece-wise lin-
ear manner. Therefore, in order for any graph-based approach
to work, a reasonable density is required to allow for the use
of Euclidean distance in a piece-wise linear manner. The sec-
ond factor is the existence of clear and separate clusters in the
latent space. This affects the assumption of the graph being con-
nected. In our case, the assumption of a connected graph was
a conscious choice we made in order to allow interpolation be-
tween any two data samples. However, allowing multiple disjoint
graphs may have it’s own advantages. For example, it could be
used to avoid interpolation between shapes that are inherently in-
compatible (more so in terms of their genus). Additional theoret-
ical and computational investigation of graph construction strate-
gies is essential. Our work paves the way for further exploration
of these research directions.
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5.4. Exploring Generative Models
Given that we wanted to systematically investigate interpola-

tion through generative models, we chose to use autoencoders
as our basic architecture. Our choice was based on the fact
that starting from a data sample in the original space and subse-
quently generating the interpolants is direct with autoencoders —
they provide an explicit encoding mechanism for a data sample
in the original space. There are several other model architectures
such as GANs that may provide better latent space distributions.
However, we did not choose to use these since they do not allow
for picking the inputs in the original space. Here, we are encour-
aged to explore other generative models like variants of GANs
that give us more control over the samples to interpolate between,
such as InfoGAN [74] that learns latent codes to represent unla-
beled data, and ClusterGANs [75] that achieve clustering in the
latent spaces of the GAN models. Given that our methodology
itself is not restricted to autoencoders, we believe there is a good
scope for future investigations of other more powerful generative
model architectures.

6. Conclusion

We presented latent embedded graph, a framework for im-
age and shape interpolation by combining dimensionality reduc-
tion enabled by generative neural networks with a simple graph-
traversal based strategy. We demonstrated our approach through
several examples by using VAEs in conjunction with k-NN and
adaptive k-NN graph traversal. Our results clearly show that this
strategy results in visually smooth interpolations. What is more
interesting in our results is that our methodology is able to (1) en-
able good interpolation even for multi-manifold data distribution
and (2) respects topological changes in the shapes that are not ex-
plicit in image based representations. We believe these outcomes
reveal a rich space to explore several directions including the de-
velopment of new efficient graph construction methods and new
evaluation metrics to evaluate persistent topological and shape
interpolations.
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[28] M. Aydınlılar, Y. Sahillioğlu, Part-based data-driven 3d shape interpolation,

Computer-Aided Design 136 (2021) 103027.

[29] M. Alexa, D. Cohen-Or, D. Levin, As-rigid-as-possible shape interpolation,

in: Proceedings of the 27th annual conference on Computer graphics and

interactive techniques, 2000, pp. 157–164.

[30] E. Klassen, A. Srivastava, M. Mio, S. H. Joshi, Analysis of planar shapes

using geodesic paths on shape spaces, IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence 26 (3) (2004) 372–383. doi:10.1109/

TPAMI.2004.1262333.

[31] A. Elgammal, C.-S. Lee, Inferring 3d body pose from silhouettes using ac-

tivity manifold learning, in: Proceedings of the 2004 IEEE Computer Soci-

ety Conference on Computer Vision and Pattern Recognition, 2004. CVPR

2004., Vol. 2, 2004, pp. II–II. doi:10.1109/CVPR.2004.1315230.

[32] H. Murase, S. K. Nayar, Visual learning and recognition of 3-d objects from

appearance, International Journal of Computer Vision 14 (1) (1995) 5–24.

doi:10.1007/BF01421486.

URL https://doi.org/10.1007/BF01421486

[33] T. Cootes, C. Taylor, D. Cooper, J. Graham, Active shape models-their

training and application, Computer Vision and Image Understanding 61 (1)

(1995) 38 – 59. doi:https://doi.org/10.1006/cviu.1995.1004.

URL http://www.sciencedirect.com/science/article/pii/

S1077314285710041

[34] R. Urtasun, D. J. Fleet, P. Fua, 3d people tracking with gaussian process

dynamical models, in: 2006 IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition (CVPR’06), Vol. 1, 2006, pp. 238–

245. doi:10.1109/CVPR.2006.15.

[35] V. I. Morariu, O. I. Camps, Modeling correspondences for multi-camera

tracking using nonlinear manifold learning and target dynamics, in: 2006

IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR’06), Vol. 1, 2006, pp. 545–552. doi:10.1109/CVPR.

2006.189.

[36] K. Moon, V. Pavlovic, Impact of dynamics on subspace embedding and

tracking of sequences, in: 2006 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’06), Vol. 1, 2006, pp.

198–205. doi:10.1109/CVPR.2006.148.

[37] I. Kemelmacher-Shlizerman, E. Shechtman, R. Garg, S. M. Seitz, Ex-

ploring photobios, ACM Trans. Graph. 30 (4) (2011) 61:1–61:10. doi:

10.1145/2010324.1964956.

URL http://doi.acm.org/10.1145/2010324.1964956
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