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Abstract

In this paper, we present a simple and intuitive approach for designing space filling tiles in 3D space. Our approach
is inspired by “scutoids” — shapes that were recently reported to occur in epithelial cells due to topological changes
between the extremal (apical and basal) surfaces of epithelia. Drawing from this discovery, we develop the theoretical
and computational foundations leading to a generalized procedure for generating Delaunay Lofts — a new class of
scutoid-like shapes. Given two extremal surfaces, both with Delaunay diagrams, Delaunay Lofts are shapes that result
from Voronoi tessellation of all intermediate surfaces along the curves joining the vertices of Delaunay diagrams that
defines the extremal tessellations. This, combined with the use of wallpaper symmetries allows for intuitive design of
complex space filling regular and semi-regular tilings in 3D space.
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1. Introduction

1.1. Problem & Context
Shell and volume structures are usually composed of

regular prisms (such as rectangular blocks) since they
are relatively easy to manufacture and are widely avail-
able. Unfortunately, reliance on regular prisms inher-
ently constrains our design space for obtaining reliable
and robust structures (1; 2; 3; 4; 5). Architects currently
investigate many other types of space filling modules,
but their investigations are not usually systematic and
focus on only a small number of known building blocks
(6). There is a need for formal approaches that enable
the design and intuitively control of a wide variety of
modular and tile-able building blocks.

In this paper, we introduce such a conceptually
simple and formal approach to design unconventional
building blocks that can be mass-produced and result
in a space filling packing. Our approach is based on
a layer-by-layer interpolation of 2D tiles using Voronoi
decomposition along the third dimension in a given 3D
domain. We call these building blocks Delaunay Lofts,
since interpolation process is similar to Lofting but is
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based on Voronoi partitioning of each 2D interpolated
domain. Such a partitioning allows for changing the
topology of the shape unlike extrude or sweep opera-
tions.

1.2. Inspiration & Approach

Until recently, the biological community assumed
that cells that packed together to form thin structures
(such as organ skin) were primarily prism-like shapes.
This view was recently updated through the discovery
of “scutoids” — shapes that frequently occur in animal
skin-cells (7). The formation of these thin (2.5D) struc-
tures can be viewed as a topology changing interpola-
tion through edge-collapse or vertex-split operations be-
tween quadrilaterals, pentagons and hexagonal faces of
any given tessellation.

Inspired by this new discovery, we first offer a view
that provides a dual version of this explanation. We ob-
serve that scutoids could be formed by a Voronoi parti-
tioning of a shell into regions based on distance to a set
curves along the thickness of the shell. This dual expla-
nation is theoretically useful since (1) it provides a well-
defined process to compute the boundaries of resulting
structures; and (2) it is able to naturally create curved
boundaries that is expected for resulting structures.
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(a) The control lines that interpolates (b) Construction process of Delaunay Lofts (c) 3D-Printed space filling

top and bottom Voronoi sites. demonstrating tilings in four different layers. Delaunay Lofts.

Figure 1: The process of construction of Delaunay Lofts. We first creates a set of control curves as shown in (a). Control curves that interpolates
Voronoi sites are shown in green. Voronoi sites are black dots. We, then, compute Voronoi decomposition in set of layers as shown in (b). We
construct Delaunay Lofts by interpolating the Voronoi polygons. The resulting Delaunay Lofts in this case are shown in (c).

(a) A Delaunay Loft. (b) Two tiles. (c) Three tiles.

(d) Ten tiles. (e) Ten tiles.

Figure 2: An example of single Delaunay Loft tile that can fill both
2.5D and 3D space. This tile is created as an interpolation of three
layers of tilings, namely (1) a regular hexagonal; (2) a square and;
(3) another regular hexagonal tilings, which is translation of the first
hexagonal tiling. The interpolating control lines are straight lines and
we do not really interpolate regular rectangular tiles. They are auto-
matically produced.

From the shape modeling point of view, this dual
explanation provides a simple yet powerful conceptual
framework that can be used to model and design a wide
variety of modular shell structures. Users can simply
provide a set of control curves as Voronoi sites to ob-
tain a decomposition of a thin plate. Even straight lines
can result in interesting structures with curved bound-
aries. Based on this explanation, we have developed a
set of simple and intuitive procedures to design a wide
variety of unconventional — and also non-intuitive —
building blocks.

Figures 1 and 2 show examples of such non-intuitive
space filling tiles that are designed using our procedure.
In Figure 1, one way to reason regarding the extremal
tilings is to view the bottom layer as a translated ver-
sion of regular square grid in the top layer. Sweeping
of a square profile through translation is normally ex-
pected to result in a prism with planar parallelogram
faces. However, tilings are not standard single objects.
We can obtain a rigid body transformation of a tiling in
more than one way. Figure 1(b) shows how the tiling is
interpolated in this particular case. As it can be seen
in Figure 1(b), the motion of Voronoi sites produces
hexagonal grids, which causes a change of 1D topology
from quadrilateral to hexagon and back to quadrilateral.
This topological change is clearly visible in the 2.5D
tilings shown in Figure 1 by triangles resulting from
edge collapse — a change that is also noted by the re-
searches on biological cell packing (7). Further, note
that these triangles are not planar since they are natu-
rally created as a by-product of Voronoi decomposition.
Since the top and bottom tilings are rigid transformation
of each other, these are 3D space filling shapes as shown
in Figures 1 and 2.
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1.3. Contributions
We make three main contributions in this work. First,

we develop a generalized approach for constructing
space-filling tilings in 3D space. This approach is based
on two key principles, the first being the use of higher-
dimensional sites (lines instead of points) for Voronoi
decomposition of 3D space and the second being the
use of wallpaper symmetries to obtain repeatable tilings.
Our second contribution is a method for direct control
of the topological change in Delaunay Lofts. Lastly, our
contribution is the algorithm to practically construct De-
launay Lofts in real-time at arbitrary resolutions without
resorting to the voxelization of a domain in 3D space.
This is based on distance functions induced by lines on
a layer-by-layer basis.

The examples in Figures 1 and 2 demonstrate the
power of our approach for designing unusual space fill-
ing structures with a simple input — a set of lines con-
structed based on known symmetries. Despite the ap-
parent complexity of the shapes themselves, the pro-
cedure to generate a complete class of such shapes is
rather simple. In the rest of the paper, we first provide
the biological inspiration and theoretical foundations of
this approach in sections 2 and 3. Section 4 introduces
our methodology to construct these shapes. We then
demonstrate the results obtained by our approach in a
systematic manner in section 5. Finally, we discuss the
implications of this approach and potential extensions
in sections 6 and 7.

2. Related Work

A space filling shape is a cellular structure whose
replicas together can fill all of space watertight, i.e.
without having any voids between them (8). Equiva-
lently, a space filling shape is a cellular structure that
can be used to generate a tessellation of space (9). While
2D tessellations and space filling shapes are relatively
well-understood (subsection 3.4), problems related to
3D tessellations and space filling shapes are interest-
ing and have applications in a wide range of areas from
chemistry and biology to engineering and architecture
(8).

A well-known anecdote to demonstrate the difficulty
of 3D tessellations is that Aristotle claimed that the
tetrahedron can fill space. Several efforts were made
to prove his claim (10) only to find that cube is the
only space filling Platonic solid (11). Goldberg exhaus-
tively catalogued many of known space-filling polyhe-
dra with a series of papers from 1972 to 1982 such as
(12; 13; 14). There are only eight space-filling con-
vex polyhedra and only five of them have regular faces,

namely the triangular prism, hexagonal prism, cube,
truncated octahedron (15; 16), and Johnson solid gy-
robifastigium (17; 18). It is also interesting that five
of these eight space filling shapes are ”primary” paral-
lelohedra (19), namely cube, hexagonal prism, rhombic
dodecahedron, elongated dodecahedron, and truncated
octahedron.

There have been many works in interpolations of
tilings in 2D space(20; 21; 22; 23). Recently, there has
been interest in the mechanical characterization of 3D
printed 2D tilings in the context of “sheet materials”
as well (24). In this case, the sheet material is only a
thin extrusion of a two-dimensional tiling. Two inter-
esting cases of 2D tilings relevant to our approach are
those presented by Kaplan (25) showing a wide variety
of artistic patterns using specific Voronoi site configura-
tions and Rao (26) that show a systematic construction
of 2D pentagonal tilings. In fact our work, in a sense,
expands on these two works to move beyond tilings in
2D space to a rich design space of tilings in 3D space.

In this paper, we have developed an approach to con-
struct non-polyhedral space filling shapes. Our ap-
proach, which can be considered as a generalization
of parallelohedra, is inspired by a recent discovery by
Gómez-Gálvez et al.(7) who observed that a simple
polyhedral form, which they call ”scutoids”, commonly
exists in epithelia cells in the formation of skin cells.
They demonstrated that having this polyhedral form in
addition to prisms provides a natural solution to three-
dimensional packing of epithelial cells. In skin cells, the
top (apical) and bottom (basal) surfaces of the cellular
structure are Voronoi patterns (as these occur frequently
due to physical constraints) (27). Gómez-Gálvez et al.
observed that the fundamental problem of packing oc-
curs when the polygonal shapes at apical and basal sur-
faces do not match (e.g. pentagonal top and hexagonal
bottom) leading to topological shift and resulting in scu-
toids.

The literature on this discovery shows the occurrence
of scutoids and provides some statistical information of
when and how they form (7; 28; 29; 30) (Figure 3). The
reason why these shapes occur in nature is that they are
the sole enablers for a space filling packing on the skin
cells. These shapes, as discussed earlier, are based on
a special type of (topological) interpolation between 2D
tiling patterns. These 2D tiling patterns typically con-
tain simple polygonal shapes such as hexagons and pen-
tagons that appear on many natural structures.

The Figure 3(a) demonstrates a usual depiction of
the originally discovered scutoid structures obtained by
edge-collapse or vertex-split operations between quadri-
laterals, pentagons and hexagonal faces. This view re-
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sults in non-planar pentagons or hexagons with straight
boundaries as shown in the Figure 3(a), but it does not
provide any well-defined process to fill inside of these
non-planar faces. Our approach is to produce space fill-
ing tiles using Delaunay diagrams with wallpaper sym-
metries. For instance, by choosing a stack of regular
or semi-regular tilings as Delaunay triangulations for
the interpolation of vertices, we obtain a set of control
curves that produces space filling tiles. If the top and
bottom tilings are rigid transformations of each other,
this process can also produce 3D space filling shapes.

Delaunay Lofts generalize scutoid-producing biolog-
ical process and can create a set of shapes that contains
the aforementioned scutoids and many other shapes that
can pack together in a space filling manner with each
other, which we call Delaunay Lofts (Figure 3(b) and
(c)). By simply assembling several of these new space
filling Delaunay Lofts, several types of shapes can be
computationally designed and physically manufactured
for mechanical (structures), architectural (tilings), and
educational (puzzles) purposes.

Our approach to obtain space filling structures, in
general, can be considered 3D Voronoi decomposition
of a set of curves that is closed under symmetry opera-
tions. The resulted Voronoi shapes in this case are guar-
anteed to be space filling. We note that our approach
is also in sync with Delaunay’s original intention for
the use of Delaunay diagrams. He was the first to use
symmetry operations on points and Voronoi diagrams to
produce space filling polyhedra, which he called Stere-
ohedra (31; 32). Our approach can be viewed as an idea
that stems from his general conceptual framework. We,
therefore, called our approach Delaunay Lofts.

When using points, construction of 3D Voronoi
decomposition is relatively simple since distances to
points guarantee to produce planar faces. On the other
hand, when we use curves or even straight lines Voronoi
decomposition can produce curved faces which, in fact,
makes our method interesting. However, having curved
faces significantly complicates the algorithms to con-
struct 3D Voronoi decomposition in high resolution.
We, therefore, choose to deal with a subset of this gen-
eral problem by: (1) decomposing the 3D domain into
thin rectangular structures that consist of a discrete set
of z-constant planar layers and (2) using only 2D sym-
metry operations based on wallpaper patterns. The next
section provides theoretical foundations to develop such
practical methods to construct Delaunay Lofts.

(b)(a) (c)

Figure 3: A comparison of the original scutoid discovered by Gomel-
Gomez et al. (7) (a) with the one generated by our method (b) shows
the difference between the interfacing boundaries between two dif-
ferent blocks. Note that not more than 4 of these shapes can be fit
together which means these structures are not repeatable and cannot
fill the space (c).

3. Theoretical Foundations

In this section, we provide the basic foundations for
our approach. All the information in this section is well-
known. We only provide it to establish a context for our
approach. This background will also provide a foun-
dation for the development of algorithms to construct
space-filling tiles in 3D space.

3.1. Fundamental Domain

In this paper, we present our approach as the decom-
position of a 3-torus that is given as a repeated cubi-
cal domain, [0, 1]3 (33) as its fundamental domain. In
other words, x ≡ x − bxc, y ≡ y − byc, and z ≡ z − bzc
where the floor operator (bac) gives the greater integer
less than or equal to a. This gives us a regular tessel-
lation of 3D space. We usually assume that z does not
repeat and 0 ≤ z ≤ 1 represents a shell, i.e. a 2.5D
structure. We further assume that curved shapes are ob-
tained by a deformation of this domain such as a tensor
product free-form volume that is defined on this cubical
domain (34; 35). Such deformations are, of course, not
straightforward, but we purposely provide our presenta-
tion using this simple domain to simplify our explana-
tion without loss of generality.

3.1.1. Domain Decomposition using Control Curves
Given the fundamental domain, our approach is sim-

ply to compute a Voronoi decomposition of this cubical
domain into the regions based on distance to a set of
curves given in the form of (xi = fi,x(z), yi = fi,y(z)),
where i = 0, 1. . . , n. Since these curves intersect any
given z = c constant plane only once, with a well-
defined distance function, the decomposition of the 3D
domain can be simplified as a sequence of 2D Voronoi
decomposition at each planar layer, z = c, based on the
distance to a set of points (xi = fi,x(c), yi = fi,y(c)) (See
subsection 3.2).
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3.1.2. Interpolation Curves
We further assume that each of these control curves

are interpolations of a set of control points given z = c j

as (xi, j, yi, j, c j). We simply choose these points to obtain
any desired Voronoi decomposition in any given planar
layer. Using these points as control points of the curves
we can obtain any desired Voronoi decomposition. For
interpolation, there is really no preference. We can even
simply use piece-wise linear interpolation.

3.2. Distance Functions
We observe that scutoids could be viewed as shapes

constructed from 2D Voronoi diagrams that are stacked
on top of each other. The shapes of the scutoids re-
sult from changes of the polygonal topology of the 2D
Voronoi diagrams as we move along each interpolated
plane (z = c). In particular, edges of Voronoi cell poly-
gons in different layers either collapse or split by chang-
ing vertex valences. To formalize this observation, we
need to show that there actually exists a formal dis-
tance function that can produce such layer by layer 2D
Voronoi diagrams. In this part, we demonstrate that this
distance function actually exists.

3.2.1. Generalized Distance Function
Let v be a vector between two points and Lm(v) be any

linear function with m = 0, 1, . . . ,M − 1. It has been
shown that the following generalization of Minkowski
distance functions can be used to compute distance be-
tween any two points (36):

d(v) =

M−1∑
m=0

||Lm(v)||p


1
p

(1)

where M is the number linear functions. To simplify
the discussion, we assume that the linear function Li

takes the form:

Li(v) =
nm · v

sm
(2)

Here, nm is a unit vector and sm > 0.

3.2.2. Circular Disk Distance Function
Let us now consider a specific distance function in

3D where L0(v) = x, L1(v) = y, L2(v) = z/s, and p = 2,
which gives us

d(x, y, z) = lim
s→0

√
x2 + y2 +

z2

s2 (3)

In this case, the implicit shape d(x, y, z) = 1 is an
ellipsoid that will ultimately go to an infinitely thin cir-
cular disk as s tends to zero. Unfortunately, s = 0 will

not lead to a valid distance function since d(0, 0, 0) must
be zero for a norm and z/s is undefined when both z and
s are zero. On the other hand, if s is arbitrarily close to
zero, z/s is still zero when z = 0.

An important interpretation of this circular disk dis-
tance is that any two points in the same layer are closer
to each other than to points in layers above or below s
amount since d(0, 0, z) > d(x, y, 0) for (x, y) ∈ [0, 1]2

and |z| > s. This is a big advantage since we now can
reduce the problem of searching for equidistant bound-
aries in thin rectangular layers bounded by s in z and 0
and 1 in x and y. Assume that the domain consists of
N layers in z direction and s = 1/N. Then, every layer
will be given by an implicit equality as is ≥ z ≥ (i + 1)s
with i = 0, 1, . . . ,N − 1. We also assume that the inter-
section of each curve with any given layer will always
be confined by a circle with radius

√
2s. This can eas-

ily be obtained by choosing the tangent direction never
makes more than 450 with z direction. We also assume
that highest frequency of the control curves never ex-
ceeds Nyquist limit (37). Then, we can safely sample
the curves at z = s(k+0.5) to use xi = fi,x(s(k+0.5)), yi =

fi,y(s(k + 0.5)) as 2D Voronoi sites and we can view this
decomposition as a discretization of the cubical domain
into N number of 2D domains given as z = s(k + 0.5).

In other words, under the assumption that the 3D
structure is thin (as characterized by the discussion
above), the 3D Voronoi decomposition reduces to 2D
Voronoi decomposition of points. These assumptions
can be safely imposed in a scenario where a user is de-
signing the interpolating curves and the number of sam-
ples. This distance function significantly simplifies es-
pecially the construction of the resulting 3D shapes by
converting the computation of 3D Voronoi decompo-
sition of lines into 2D Voronoi composition of points.
Based on this distance function, the construction can be
done in real time during interactive design. In order to
develop an intuitive design methodology for shape de-
sign, we use Delaunay diagrams.

3.3. Delaunay Diagram
It has been shown that the computation of a Voronoi

diagram can be greatly simplified by working with its
dual, which is known as the Delaunay diagram of the
given sites (38; 39; 40). Figure 4 shows the construc-
tion of a Voronoi diagram using the Delaunay diagram.
Delaunay diagrams also turn out to be useful for design-
ing the proposed Delaunay Lofts since the problem of
interpolations of polygons simplifies into that of merely
interpolating points along a set of control curves. With
Delaunay diagrams we can precisely design the control
curve as an interpolation curve that goes through a set

5



of critical points that defines exact locations where the
polygonal topology changes.

3.3.1. Cyclic Polygons
The key idea behind Delaunay diagram are cyclic

polygons. To precisely control polygonal topology
changes, we use the fact that when n-number of points
forms are inscribed in a circle, they form a convex cycli-
cal polygon and their n-perpendicular bisectors to the
sides are always concurrent and the common point is
always the center of the circle (Figure 4(b)). This prop-
erty helps us to design desired control curves by directly
controlling the number of sides and vertex valances of a
Voronoi tessellation in every layer. We basically create
the desired Delaunay diagrams in some layers and inter-
polate their vertex positions. The only issue is to keep
the number of vertices identical.

3.3.2. Diagram vs. Triangulation
We want to point out that Delaunay diagrams are not

exactly Delaunay triangulations. Specifically, a trian-
gulation of n ≥ 2 sites is Delaunay if and only if the
circumcircle of every interior triangle is point-free (40).
One well-known but misleading property of Delaunay
triangulations is that when four or more points are on the
same circle, we can still create a formal Delaunay trian-
gulation by triangulating these faces since any of these
non-unique triangulations still satisfy the two proper-
ties of Delaunay triangulations. Delaunay diagrams are
the real dual structures of Voronoi diagrams wherein a
face becomes a vertex and a vertex becomes a face (Fig-
ures 4(c) and 4(d)).

In a Delaunay diagram, we draw only one polygon
per unique circle. Not only does this eliminate any am-
biguity but also simplifies the design process since the
number of sides of the polygon directly defines the va-
lence of corresponding Voronoi vertex. In the rest of this
section, we discuss a few strategies to design Delaunay
triangulations.

An important implication of this observation is ex-
plicit controlling topology changes. In a Delaunay trian-
gulation, if more than one triangle share the same circle,
the corresponding triangulation is not unique since it
means more than three Delaunay vertices form a cyclic
polygon. The number of vertices of these cyclic poly-
gons directly determines the valance of corresponding
vertex in Voronoi structure. Therefore, by controlling
how many triangles share the same circle in every layer,
we can change mesh topology in any desired layer.

(a) Voronoi sites. (b) Circles

(c) Delaunay diagram. (d) The corresponding Voronoi Diagram.

Figure 4: An example to demonstrate how to design single polygon
tilings as dual meshes of regular or semi-regular tilings. Note that each
polygon in semi-regular Delaunay diagram is regular, and therefore,
cyclic. (c) shows a Delaunay diagram that is a semi-regular mesh with
the same vertex figure, which is 3.4.3.4.3. The corresponding Voronoi
Diagram in (d) is a tiling that consists of the same polygons, which
are pentagons. This property holds for all semi-regular tilings.

3.4. Regular and Semi-regular Tilings

To construct Delaunay diagrams, we are interested in
geometric regularity since we want to establish cyclic
conditions. Since any regular polygon are also a cyclic
polygon, any tiling that consists of regular polygons are
good candidates to design Delaunay diagrams.

The most obvious candidates are Euclidean regular
tilings, which are planar polygonal tilings where all
faces are regular polygons and all vertices are isomor-
phic to each other. The Schläfli symbol (n,m) is used to
characterize these regular tilings, where n is the number
of the sides in each face and m is the valence of vertices.
There are only three regular tilings: (3, 6), (4, 4), and
(6, 3), which are regular triangular, square, and regular
hexagonal tiles (41; 16). The tilings shown in Figure 2
are, in fact, the result of a bi-directional interpolation
between (6, 3) and (4, 4) regular tilings (i.e. we have
three planes in the order: (6, 3), (4, 4), and a translated
(6, 3)).

If we relax the conditions of regularity, we obtain
semi-regular tilings, in which all vertices have exactly
the same structure and all faces are regular, but more
than one type. These are usually represented with ex-
tended Schläfli symbol as a series of numbers separated
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by periods, where each number represent the sides of
regular polygons around the vertex (42; 43; 44). For
instance, 3.4.3.4.3 is a semi-regular tiling that consists
of one regular triangle, one square, one regular triangle,
another square and another regular triangle in a rota-
tion order around each vertex (Figure 4(c)). In plane,
there are only eight distinct semi-regular tilings. Note
that duals of these semi-regular tilings consists of single
polygon, not necessarily regular (Figure 4(d)). When
we use these semi-regular tilings as Delaunay diagrams,
we guaranteed to obtain Voronoi diagrams that consists
of same type of polygons. For instance, the space filling
Delaunay Loft shown in Figure 5 is designed by inter-
polating 3.4.3.4.3 with regular square tiles.

Figure 5: Another 3D printed space filling Delaunay Loft that is ob-
tained by interpolating two 3.4.3.4.3 patters.

A generalization of regular or semi-regular tilings are
k-uniform tilings, where k refers the number of differ-
ent polygons (45; 46). Each can further be grouped
by the number m of distinct vertex figures, which are
also called m-Archimedean tilings. Regular and semi-
regular tilings are 1-uniform 1-vertex tiles, i.e. there are
8 + 3 = 11 1-uniform tiles. Up to k = 6, k-uniform tiles
are enumerated. For instance, we know that there are 20
2-uniform and 2-vertex tiles; 22 3-uniform and 2-vertex
tiles; and 39 3-uniform and 3-vertex tiles so on. In other
words, we already have an extensive list of tilings that
can be constructed by regular polygons and they all can
be used as Delaunay diagrams. The list even up to k = 6
is exhaustive and provides significant amount of possi-
bilities. Also note that the cyclic condition of Delaunay
is much more relaxed condition than regularity condi-
tion. It could, therefore, be better to approach the design
problem using wallpaper patterns.

3.5. Wallpaper Patterns
There exist seventeen distinct symmetries in 2D

plane, called wallpaper patterns. In literature, these pe-
riodic symmetry groups are called as p1, p2, p4, pm,
pmm, p4m, p4m, cm, cmm, pg, pmg, pgg, p4g, p3, p6,
p3m1, p31m and p6m (44). Each one of these symme-
try groups is a collection of isometric operations, which
preserve the distance of any two points, i.e. translation,
rotation, reflection and glide reflection. The rotations

can have periods two, three, four or six. The complete
list of the 17 symmetry groups in plane can be classified
in two categories: rectangular and hexagonal. Namely,
12 of these 17 groups have rectangular symmetries, i.e.
their natural fundamental domain is a rectangle. The re-
maining 5 have hexagonal symmetries, i.e. their natural
fundamental domain is a hexagon.

It has been shown that we can use rectangle as the
fundamental domain for hexagonal symmetries (47). In
other words, regardless of the symmetry group, any
symmetric tiles can be represented by a simple rect-
angular fundamental domain, which can be embedded
over a toroidal surface. Thus, we can construct any
wallpaper by symmetry operations that is constrained
in fundamental domain.

Figure 6: Rectangle can also be used as a fundamental domain for
the five wallpaper symmetries whose natural fundamental domain is a
regular hexagon (47).

This property is not just practically useful for our ap-
plication, it also provides the theoretical support to use
cubical fundamental domain for Delaunay Lofts. Be-
cause of this property, we can obtain any 2D wallpa-
per symmetrical Voronoi decomposition that can be ob-
tained using points as Voronoi sites in any layer. Control
curves can simply be obtained by interpolating Voronoi
sites (i.e. Delaunay vertices).

Another important property of wallpaper patterns,
which we use, is that all semi-regular tilings can be
constructed using wallpaper symmetry operations. In a
semi-regular tiling the vertices being “the same” means
that for every pair of vertices there is a symmetry oper-
ation. For instance, in semi-regular mesh 3.4.3.4.3 has
the wallpaper symmetry p4g.

The only caveat in this approach in terms of the de-
sign is that the number of Voronoi sites in every layer
has to be the same. Using a rectangle as our regular
domain also provides a solution to that problem. Note
that the regular rectangular domain in Figure 6 actually
consists of two hexagons, one full (blue), and a second
one that is decomposed into four pentagons (two yel-
low and two red). This means that if we create points in
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hexagonal symmetry, we need to multiply the number
of points by two. Also note that the symmetries always
have periods of either two, three, four or six. Using this
information, we obtain the same number of points using
their least common multiples (LCM). For instance, if we
want to connect symmetries with four or six, 12 points
will be sufficient. One will be created as three random
points with four period. Another will be created as one
random point with period six in two hexagons.

4. Methodology

The key element of our approach is a distance func-
tion that reduces Voronoi decomposition for a given
set of curves into a set of Voronoi decomposition with
respect to points on those curves. This approach
makes the our construction algorithm independent of
the complexity of the control curve while providing
well-defined and curved boundaries. Based on our con-
struction algorithm, we have also developed an intu-
itive methodology to design these structures. We sim-
ply produce the control curves as an interpolation of
the vertices of the a set of stacked Delaunay diagrams,
i.e. vertices of the dual graphs of a set of stacked 2D
Voronoi diagrams, with the same number of vertices.
The Voronoi decomposition obtained with these control
curves gives us a natural interpolation of 2D Voronoi
diagrams producing Delaunay Lofts.

An important implication of this approach is that it al-
lows us to explicitly control topological changes across
the evolving Voronoi decomposition. In a Delaunay tri-
angulation, if more than one triangle share the same
circle, the corresponding triangulation is not unique
since it means more than three Delaunay vertices form
a cyclic polygon. The number of vertices of these cyclic
polygons directly determines the valance of correspond-
ing vertex in Voronoi structure. Therefore, by control-
ling how many triangles share the same circle in ev-
ery layer, we can change mesh topology in any desired
layer.

4.1. Construction Methods
We present a construction algorithm in a domain of

bounded rectangular prism and extend this construction
algorithm for rectangular prisms that are fundamental
domains.

4.1.1. General Construction Algorithm
The process consists of the following steps:

1. Sample N number of constant z planes for a rectan-
gular prism. We call these planes layers, as shown
in Figure 7(a).

2. Design M number of curves inside of the rectan-
gular domain. Figure 7(b) is an example using
randomly generated line segments using jittered
points on the extremal layers.

3. Find the intersection of curves with intermediate
layers. For each layer, compute its Voronoi parti-
tioning by using intersection points with that par-
ticular layer as Voronoi sites. Since the space is
bounded, the boundaries of the prism becomes part
of Voronoi polygons (See Figure 7(c)).

4. Offset each Voronoi polygon the same amount us-
ing Minkowski difference. Note that this process
can also change topology of the polygons (See Fig-
ures 7(d,e)).
Remark: Step 4 ensures the production of sepa-
rable Delaunay Lofts while printing a tiling as a
whole. The offset is half the width of the 3D print-
ing nozzle.

5. Treating each vertex as a single manifold, insert
edges between consecutive vertices thereby turn-
ing each original face into a 2-sided face, which is
2-manifold (48) (See Figure 7(f)).

6. Connect 2-sided faces with insert-edge operations
(49) to form a single genus-0 object (See Fig-
ure 7(g)). This series of edge insertions results in a
Delaunay Loft (See Figure 7(h)).

4.1.2. Construction of a Single Delaunay Loft
Here, we present an algorithm that guarantees to ob-

tain genus-0 surface that corresponds to a single Delau-
nay Loft.

1. For every two consecutive 2-sided faces, select the
polygons they face each others. Each of these poly-
gons will be given a set of half-edges with oppos-
ing rotation orders. Figure 8(a) provides an exam-
ple of such two such polygons, one triangle and
one pentagon. Note that the rotation order of half-
edges in the triangle is counter-clockwise and ro-
tation order of half-edges in the pentagon is clock-
wise.

2. Compare vertex positions of the two polygons and
identify two closest vertices.

3. Insert an edge between the corners of two closest
vertices of the two polygons (See Figure 8(b)). In-
sert edge operation combines the two planar poly-
gons into one face. When we complete this oper-
ation for all pairs of polygons, the resulting struc-
ture is a single genus-0 surface. The only prob-
lem is that the resulted combined faces are compli-
cated with one edge whose both half-edges are in
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(a) Initial Layers. (b) The control curves. (c) Voronoi decomposition of layers. (d) Offset polygons.

(e) Offset polygons for one Voronoi Loft. (f) Construction of 2D sided (g) Connecting 2-sided faces (h) Final Voronoi Loft.

(i.e. 2-manifold) faces. by inserting edges.

Figure 7: Construction Algorithm over a bounded rectangular prism domain.

(a) Initial polygon-

pair with opposite 

rotation order

(b) Inserting an 

edge to combine 

the two polygons

(c) Parametri-

zation of corners 

of combined face

Figure 8: An example of connecting two polygons, a pentagon and
and a triangle, by inserting edges. Half-edges are shown as arrows
and edges (i.e. two half-edges) are shown as line segments.At the end
of a process of a series of edge insert operations, we obtain triangles
and quadrilaterals by subdividing combined face.

the same face. Therefore, there is a need for sub-
dividing this face into geometrically well-defined
faces, i.e. triangles and quadrilaterals.
Remark: It is easy to subdivide the combined face
using a series of insert edge operations. Since an
insert edge operation that is applied to a 2-manifold
mesh always creates another 2-manifold, we can
never get non-manifold. On the other hand, if one
is not careful, it is always possible to introduce
topological noise, i.e. one can increase genus by
introducing holes and handles (50). Next step pro-
vides an algorithm to avoid that guarantees genus-0
surface.

4. Assign two parameters, 0 ≥ u ≥ 1 and 0 ≥ v ≥

1, along the perimeter of each polygon, one in
counter-clockwise and another in clockwise, start-
ing from one side of the inserted edge and ending
the other side of inserted edge. This assigns a para-
metric position to each corner of the polygon ui and
u j as follows:

un =
1
L

n−1∑
i=0

Li , vm =
1
D

m−1∑
i=0

Di (4)

where Li and Di are length of half-edges in poly-

gons 1 and 2 respectively; L =

N−1∑
i=0

Li, D =

M−1∑
i=0

Di,

and N ≥ M.
5. To guarantee that the operation does not produce

topological noise, i.e. not to increase genus, edges
must be inserted between corners in the same face.
This could be done a variety of the ways. The fol-
lowing pseudo-code provides the algorithm we use
to obtain genus-0 Delaunay Lofts:

4.1.3. Construction with Fundamental Domain
This extension is straightforward. We use nine copies

of fundamental domain to form a single rectangular
prism and compute Delaunay Lofts as in previous sub-
section. However, we only use Delaunay Lofts in the
center rectangular prism .

9



Algorithm 1: Pseudocode for Single Delaunay Loft

n = 0; m = 0;
while (n ≤N and m <M) or (n <N and m ≤M) do

if (n <N) then
n = n++;

if (|un − vm| ≤ |un − vm+1|) then
InsertEdge(un, vm);

else
InsertEdge(un, vm+1);
if (m <M) then

m++;

(a) Edge Parameterization. (b) Parametric positions of corners.

(c) First insert edge. (d) Second insert edge.

(e) Forth insert edge. (f) Fifth insert edge.

Figure 9: The algorithm in parameter domain working for the example
shown in 8, showing parametric positions of un’s and vm’s.

5. Results

Our approach when applied to the original scutoid
discovered by Gomel-Gomez et al. (mapping Hexagon
to Pentagon) (7) produces curved surfaces which is dif-
ferent from the common description of scutoids with
planar surfaces (Figure 3). Note that not more than 4 of
these shapes can fit together to create a repeatable block.
In our approach, the interface between any two shapes
are naturally curved due to Voronoi-based interpolation
ensuring that the tiling is space-filling.

The construction algorithm allows for exploring and
investigating a vast variety of shapes that are possible
now. The only constraint is to have the total number of
points to be equal in the two layers we intend to inter-
polate. To ensure repeatability of the Delaunay Lofts,
we should have geometric regularity in the tilings we
interpolate. In the following sub-sections, we explore
different strategies for achieving the geometric regular-

ities. Furthermore, for a few selective cases, we also
conducted preliminary finite element analysis (FEA) to
better understand the potential advantages of Delaunay
Lofts over prisms.

5.1. Delaunay Lofts with 464

Since any regular polygon is also a cyclic polygon,
we start with regular polygon tilings as they are good
candidates to design Delaunay diagrams. We will then
extend and generalize this idea to Semi-regular and
Regular tilings with Wallpaper patterns. We start our
exploration with a simple Hexagonal tiling, which is
one of the three Euclidean tilings of the space (apart
from square and triangle). With the longer axis of the
hexagon aligned vertically, we move alternate rows of
hexagon tiling in opposite directions. We displace the
Hexagon by an amount equal to half the horizontal dis-
tance between two subsequent cells in a row. Half way
through the process, every hexagon changes to a quadri-
lateral. Similar interpolation pattern was also suggested
by Kaplan (25) in his work on Voronoi Diagrams and
ornamental design.

We conducted a preliminary FEA on the 464 De-
launay Loft with the hypothesis that since the central
layer (z = 0.5 in parametric domain) is enforced to be
a regular quadrilateral tiling, we will observe some in-
teresting effects at this layer when compression, tension
and torsion are applied individually to a single 464-Loft
(Figure 10). This indeed turned out to be true. The
analysis shows that the stress levels are lower in the
regions where the topology changes (vertex-split and
edge-collapse occurs). We suspect that these mechan-
ical properties are likely as scutoids are proved to sta-
bilize the three-dimensional packing and minimize the
tissue-energy based on biophysical arguments as pro-
posed by Gomel-Gomez et al (7). A detailed and sys-
tematic investigation is needed to confirm this hypothe-
sis.

A simple extension to regular hexagon interpolation
by reducing the distance in between the cells on the ex-
tremal layers would give us a Quad - Quad interpolation
(Figure 2), with again a Quad in the center. We also
found another interesting case similar to the T1 transi-
tion (51) that occurs during the morphogenetic process.
We patterned one such transition throughout the plane
to obtain the Pent-Quad-Pent shapes (Figure 12). Sim-
ilar to previous examples these have lower stress at the
critical points where the topology changes in the FEA
results for twisting, compression and shear (Figure 10).
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(a) Min: 3.2121e6  

Max: 1.5717e8
(c) Min: 7.6954e6 

Max: 1.0641e10

(d) Min: 1.5791e7

Max: 5.98e8 
(e) Min: 0.01738

Max: 10.995

(f) Min: 1.53e7

Max: 1.6443e10

(b) Min: 1.2 

Max: 14.99

Max*

Min*

* Range is adjusted for every FEA to make the stress distribution visible 

0.00

1.00 (cm)

* All the Min and Max values are in Pascal

Figure 10: Contour-Maps of Equivalent Stress (von-Mises) of two De-
launay Lofts (Pent-Quad-Pent on top row, Hex-Quad-Hex on bottom
row) are shown for three loading conditions, namely, torsion (a, d),
compression (b, e), and shear (c, f). In all cases, the stress distribution
decreases around the critical points where the topology changes. The
torque and compression stress were 1 Nm and 1 Pa respectively. The
Lofts were sheared by displacing the top layer by 0.1 mm with a fixed
bottom layer. All simulations were done using ANSYSR© Mechanical
Enterprise (ANSYS 2019 R1).

5.2. Investigating Wallpaper Symmetry

Here, we generalize beyond the special cases dis-
cussed in the previous section to generate more planer
symmetries based on one of the 17 wallpaper groups.
We start with p4 symmetries wherein we take a subdi-
vide a unit square into 4 equal square pieces and sample
points with 4 rotational symmetry. By extending this
symmetry to the control curves in 3D space (achieved
simply by mirroring the selected control curves about
the z direction), we can simply repeat the unit domain
in 3D space to construct the tilings. Most of the De-
launay Lofts we get using these symmetry patterns have
highly curved interfacing between two adjacent tiles and
may offer better interlocking capabilities when com-
pared with its prism counterparts. We can also extend
the tilings to semi-regular tilings. We have shown few
results in which two Delaunay Lofts together fill the
space in a specific pattern (Figure 13).

5.3. Extension to Curved Control Lines

Extending our method to non-linear control curves,
such as circular, cosine, or Hermitian, is especially
promising for creating more unusual free-form tilable
shapes. We specifically experimented with Hermitian
interpolation (Figure 11) since it is possible to ex-
tend this to multiple control layers and more control in

derivatives. Note that we do not have to be careful to
keep the curves in the rectangular prism domain since
the curves are conceptually drawn in 3-torus.

Figure 11: A space filling Delaunay Loft obtained by Hermitian
curves.

6. Discussion

6.1. Geometric Properties & Tilings

Broadly speaking, there are two main geometric re-
quirements that was needed from the 3D shapes that we
intended to create. First, we wanted to be able to com-
pose space filling patterns with the shapes. Second, we
hoped for the pattern to be composed of ideally a single
(or at least a finite set of) repeatable shapes. Here, our
approach offered a unique advantage. The first condi-
tion is naturally satisfied by the strategy to use Voronoi
partitioning (since any such partitioning is guaranteed
to fill space of any given dimension). Therefore, the
space filling condition is satisfied regardless of how the
Voronoi sites are distributed on each of the extremal
surfaces (as long as we can establish a on-to-one corre-
spondences between the sites on each surface). We then
addressed the second condition of repeatability through
our method of construction and design based on wall-
paper symmetries. Combining these two components
resulted in a simple yet powerful methodology.

Most works on tiled 3D shapes in the past are per-
formed purely by geometric reasoning. We believe that
this change of perspective offered a unique advantage.
Ours is probably the first to apply geometric reasoning
to describe a bio-physical phenomenon in order to ap-
ply it to 2.5D tiling design in a systematic manner. Our
approach provides a possible explanation for the occur-
rence of scutoids in skin cells (7) and demonstrates the
construction of many other shapes similar to scutoids.

Having said this, we would also like to point out that
it is still to be completely tested that the method that
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Figure 12: The three patterns (left to right) show the Voronoi diagrams from the bottom, middle and the top layer of interpolation. In the first row
we show the 464 Delaunay Lofts and second row shows the Delaunay Lofts obtained by interpolating 3.4.3.4.3 patterns.

we propose here for constructing Delaunay Lofts can
indeed also be used to model the original scutoids. The
key gap that needs to be addressed for this is to com-
pare the actual geometry (and not the idealized model
shown in Figure 3) that is experimentally obtained with
one constructed using our approach with the same initial
conditions as the bio-physical case.

6.2. Geometric Design Space
The design space of shapes that can be composed us-

ing our approach is unusually rich. This is due to three
facts. First, the construction algorithm does not assume
any specific shape of the control curves — as long as
they intersect each slicing plane at a unique point thus
maintaining the number of sites per slice. This alone
provides many possibilities in terms of obtaining seem-
ingly complex geometries. Second, the 17 wallpaper
symmetries result in several possibilities in terms of the
tiling configurations that may be possible with our ap-
proach. Finally, the distance functions utilized in all
our examples are only L2-norms. Generalizing to Lp-
norms will lead to even more unusual shapes that we
have currently demonstrated. Having said this, we have
currently exposed only a limited set of repeatable tiles
as examples in the paper. We are currently developing a
more systematic geometric kernel and interactive soft-
ware to explore the complete design space of Delaunay
Lofts.

7. Conclusion and Future Work

In this paper, we presented an approach to construct
and eventually design a new class of tilings in 3D space.

We have developed an algorithm that takes as input two
planes containing Voronoi tessellations based on some
distribution of points and interpolates the tilings be-
tween these given planes. The volumetric structures ob-
tained through this interpolation result in the occurrence
of Delaunay Lofts. There are several variations of how
this interpolation can lead to a variety of such Lofts.

The future work is to investigate the power of shapes
that are created by our bio-inspired design approach in
terms of withstanding stress, torsion or fatigue. If these
approaches can create powerful shapes in terms of with-
standing stress , torsion and fatigue, this approach could
be arguably applied to come up with completely new de-
signs and structures that could have greater strength. An
advantage of our approach is that it can easily be used
in combinatorial optimization. Therefore, this approach
could take the industry to the next level of material op-
timization and unveil endless possibilities of geometric
designs with Delaunay Lofts.
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