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A B S T R A C T

Modularity is a fundamental and intriguing property of fabrics. Given the same set of
threads, one can construct different geometries and therefore physical behavior simply
by changing how those threads are linked to each other. As a result, fabrics have been
been studied with great interest in engineering applications. However, most engineering
applications model fabrics as composite structures reinforced with a secondary material
that fills the gaps between thread elements.

In this work, we first show the existence of threads that are space-filling without the
need for other materials. We then introduce a simple approach to construct such space-
filling threads by using a single modular element that can be obtained by partitioning a
cube into two yin-yang type identical pieces. These yin-yang type congruent tiles can
directly be constructed by using a parametric approach. Another property of these tiles
is that they are foldable, i.e., they can be constructed by folding planar materials. We
show that there exist infinitely many such congruent tiles. We further demonstrate that
any 2-way 2-fold woven structure can be constructed by translated and rotated versions
of such congruent tiles.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction and Motivation

Fabric provides a wide variety of material properties through

different interlocking configurations of its threads. Simply by

changing the interlocking configurations, one can generate an

entire class of weaves (plain, twill, satin, just being among the

ones known in the vernacular) with significantly varied me-

chanical characteristics. Because of this, woven fabrics have

been studied in engineering research both as flexible systems

∗Corresponding author:
e-mail: tolgayildiz@tamu.edu (Tolga Yildiz)

[36] as well as composites wherein the underlying fabric struc-

ture is typically reinforced with a secondary material that fills

the gaps between thread elements [45, 50, 2]. In recent liter-

ature, we also find works that have explored woven fabrics as

space-filling tiles that offer immense possibilities for designing

structural systems with properties such as fracture toughness

[40, 41].

From a representational perspective, one of the most impor-

tant properties of weave patterns is their modularity — they can

be represented as an spatially organized assembly of cells that

represent the warp and weft directions of the woven threads
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(a) Two woven (plain (102, 1) and twill (11002, 1)) structures constructed
with our congruent tiles.

(b) Side view of two woven table tops with a cup of
tea standing on the top.

(c) Another view of two woven table tops with a cup
of tea standing on the top.

Fig. 1: These images show two woven planar 3D-printed slab structures constructed by the same congruent tiles. These structures are assembled using magnets. We
use colored tiles to show the underlying weaving structures: In this case, a plain weave on the left and a twill weave on the right. We used these planar slabs as table
tops. The examples show that the assembly can support a cup of tea when connected by magnets.

[30, 31, 32, 33]. Interestingly, this powerful system of represen-

tation has not yet been translated into a cogent design method-

ology for generating weave-inspired space-filling tiles.

In current works on woven tiles [40, 41], each weave pat-

tern requires the construction of a specific type of woven tile

unique to that pattern. Consequently, the physical construction

of a space-filling woven pattern necessitates manufacturing new

tiles for each new pattern. Another problem with woven tiles is

that they could be geometrically interlocked [21, 24], i.e., in-

terlocked in a manner that either necessitates the use of flexible

blocks for assembly or requires cutting tiles in multiple non-

interlocking pieces [40, 41].

In this work, our goal is to cater to the need for a modular

approach that enables the creation of any desired weaving pat-

tern using a finite (preferably a singleton) set of woven tiles.

We further aim for these modular tiles to be simple enough to

be manufactured economically and allow for different produc-

tion techniques. Previously investigated woven tiles [41] are not

foldable and, as a result, are impossible to manufacture through

the folding of flat materials, which is especially essential to

manufacture large size building blocks economically. Our ap-

proach seeks to create a methodology such that these tiles are

guaranteed to be topologically interlocked [21] and can be man-

ufactured in a variety of ways (additive, subtractive, foldable) in

a wide variety of scales. For instance, guaranteeing foldability

from flat to 3D tiles can be instrumental in medium and large-

scale architectural and civil constructions owing to (1) easy pro-

duction through laser cutting, (2) efficient transportation as flat

pieces, and (3) in-situ construction through traditional means

such as concrete-filling. This may especially be useful for mod-

ular constructions in remote locations. For medium-scale appli-

cations, the ability to manufacture such tiles using subtractive

processes such as flank milling is also quite useful. Finally, fab-

ricating such tiles using additive manufacturing could be quite

useful for applications involving meso-scale meta-material de-

sign akin to previous works.

We present a parametric approach that is based on the de-

composition of a cube into two yin-yang type identical regions.

We guarantee that the shape of these two tiles is foldable by cre-

ating a foldable interface between them. These tiles correspond

to a part of warp and weft threads of 2-way 2-fold fabrics. By

connecting them in x and y directions, we can obtain the warp

and weft threads of any length. By mirroring the cubes in the

z direction, we can obtain any weaving patterns from plain to

twill and satin. As a result, the same proto-tile can be used to

generate all possible weave patterns without the need for tailor-

ing the proto-tile for different weaving pattern.

1.1. Basis and Rationale

To obtain all possible weaving patterns with a single con-

gruent tile that can be economically manufactured, the shapes

of these tiles must satisfy five conditions. These conditions

uniquely define the constraints of our approach.

1. Yin-Yang Condition: The first condition is to create de-

compositions of the unit cell (in 2-fold 2-way fabrics, the unit

cell is a cube) into two congruent pieces. Based on the cube’s

isometries, these two congruent pieces should be closed under

at least one symmetry operation. This requirement suggests that
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Fig. 2: Examples of multi-panel foldable and unfoldable saddles made from
planar steel surfaces sculpted by Ilhan Koman [3].

the center of the cube should be shared by the two congruent

shapes.

2. Saddle Condition: The second condition is to create a

saddle-shaped interface between the two congruent shapes. In

other words, the center should be a saddle point. A saddle in-

terface is critical to increasing the interlocking between the two

pieces.

3. Foldability Condition: To obtain a saddle surface that can

be folded and unfolded to a planar surface, we need to create

a foldable interface between the two congruent shapes. Such

a saddle surface can be constructed by multiple developable

panels, which are flat-shaped materials bent without deforma-

tion, i.e., Gaussian curvature is always zero, such as paper or

thin metals. Developable panels can be inexpensively cut us-

ing laser cutters. Since cutting is just a 2D operation, it is also

fast to shape developable panels. It is also easy to transport

these panels since they are just thin flat shapes. Multiple de-

velopable panels can also be easily assembled to fold into large

shapes. Sculptor Ilhan Koman showed the existence of saddle

shapes using multiple developable panels [3] as shown in Fig-

ure 2, created by connecting every point on a curve on a unit

sphere to the center of the sphere with straight lines. For our

purposes, to make saddle surfaces piecewise linear approxima-

tion of developable surfaces is sufficient.

4. Assembly & Disassembly Condition: The saddle regions

that are in the interface of two modules should allow assembly

and disassembly. In other words, they should only be topo-

logically interlocked [21] and must not be geometrically inter-

locked [24]. It is also important to note that previous woven

tiles could be geometrically interlocked, which requires use of

flexible blocks for assembly [40, 41] Examples of complicated

saddle regions that do not allow assembly and disassembly are

shown in Figure 2. It should be clear that we need to avoid es-

pecially the kind of complex saddle shapes that are shown in

the bottom right of Figure 2.

5. Connectability Condition: There should be a large area to

connect the tiles that lie in the same direction, corresponding to

the same warp (y-direction) or weft (x-direction) threads.

Based on these five conditions, we develop a parametric ap-

proach to design a wide variety of congruent woven tiles (see

Figures 3 and 4 for examples).

(a) The local coordinates in
the unit cell, a cube.

(b) Circular warp and weft threads that work as Voronoi
sites to decompose the unit cell.

(c) A yin-yang type decomposition of a
sphere: Tennis Balls.

(d) A yin-yang type decomposition of the
unit cell that can corresponds to 3D ver-
sions of strands [30].

Fig. 3: An illustration that demonstrates an example of desired yin-yang type
decomposition of the unit cell. They can be obtained with Voronoi decomposi-
tion of the cube by using higher-dimensional shapes that are closed under sym-
metry operation that can take warp threads into weft threads. In this example
two circular segments that are used as Voronoi sites are obtained by applying
such a symmetry operation a 900 rotation in z followed by a mirror in z.

1.2. Approach

Our approach stems from the decomposition of a cube using

Voronoi sites that are symmetric based on symmetry structures
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of warp and weft threads. Starting from the conditions identi-

fied previously (Section 1.1), our approach stems from an con-

ceptual experiment that seeks to partition a cube into two iden-

tical parts such that their combination respects the warp-weft

relationship — the building block of a weave pattern. Consider

a cubical volume (Figure 3a) that encloses two semi-circular

arcs on the surface of the largest sphere inscribed in the cubical

volume (Figure 3b). Conceptually, an expansion of these arcs

on the surface of the sphere can be imagined to lead to a yin-

yang partition of the sphere’s surface (resembling a tennis ball

as shown in Figure 3c). In order to realize our original goal of

partitioning the cube, we simply sample points on these arcs to

identify two distinct sets of Voronoi sites and perform Voronoi

decomposition (Figure 3d). What is interesting about the inter-

facing surfaces between these two partitions is that it is com-

posed of four semi-conical surfaces that share their apex which

is both a saddle point and also lies at the center of the cube. In

conjunction, these two observations mean that our partition: (1)

results in congruent interlocking (yin-yang) tiles, (2) respects

the weave (warp-weft) relationship, and (3) can be folded from

a flat sheet (conical).

(a) Internal Structure of the sphere decompositions.

(b) Internal Structure of the cube decompositions.

Fig. 4: The internal structure of the yin-yang type decompositions shown in
Figure 3 shows the internal structures for both sphere and cube are the same
and developable. They can be obtained by connecting the center of the sphere
with the curve on the sphere. The left images show how the interface results
in Voronoi decomposition. The middle image shows how the interface can be
created by connecting the space curve with the center point. The right image
shows actual pieces sufficiently separated to show their overall shape.

The key insight gained from our experiment is that the family

of curves (Figure 4a, left panel) that split the spherical surface

into yin-yang shapes (Figure 4a, right panel) are the same as the

boundary curves (Figure 4a, middle panel) on partitioning in-

terface of the cubical volume, In fact, if we connect each point

on these curves with the lines emanating from the center of the

cube, we guarantee to obtain the interface between two congru-

ent woven tiles. Note that the interface is developable and con-

sequently parameterizable. Alternately, this curve, which looks

like a boundary of Pringles Potato Crisps (Figure 4a, middle

panel), is the result of the Voronoi decomposition of the two

half-circles shown in Figure 3b. This observation can be ex-

tended further to go beyond the specific example shown in this

experiment thereby offering a methodology to generate param-

eterizable and developable interfaces. This implies that we do

not need to compute Voronoi decomposition. We can directly

define such curves by simply creating control polygons with a

large variety of design options. We have identified that these

control polygons must be closed under warp-weft symmetry to

satisfy five conditions given in 1.1. Final boundary curves are

obtained from these control polygons by any spline or subdi-

vision algorithm that can preserve the original symmetry. By

connecting the final boundary curves with the sphere center, we

can create the interface between two yin-yang shapes. These

interfaces are conceptually similar to saddle shapes shown in

Figure 2.

1.3. Contributions

In this paper, we have four main contributions:

1. Parametric Approach: We developed a parametric ap-

proach to produce a family of congruent tiles that can be used

as basic modules that can be used to construct any planar slab of

arbitrary size as a fabric structure that is woven with any given

2-way 2-fold pattern.

2. Foldability: Any basic module in this family of congruent

tiles can be unfolded into a single panel and, therefore, manu-

factured economically using laser cutting.

3. Modular Design: These modular tiles can provide all possi-

ble 2-way 2-fold weaving patterns.

4. Design Power: By creating all possible 2-way 2-fold weav-
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ing patterns, it is possible to obtain a wide variety of behaviors

using the same set of tiles.

We also make other minor contributions by relaxing strong

congruent conditions. Specifically, we demonstrate that any

woven pattern on a cylindrical slab could be obtained using only

three types of woven tiles. We further show the construction of

height fields without a significant change in the general method.

It is still possible to obtain any weaving pattern, however, based

on the shape of the slabs and weaving pattern each woven tile

must be different. We discuss how to cover any 2-manifold sur-

faces with woven tiles. For instance, we can always guarantee

to obtain a plain weaving pattern for any given 2-manifold mesh

surface. Finally, we develop a new notation for fabric patterns

that can express the structure of the patterns more effectively.

(a) Top view of the fundamental regions
of three simplest 2D weaves, namely
plain (102, 1); twill (1102, 1); and twill
(11002, 1).

(b) Matrix representations of the fundamen-
tal regions of three simplest 2D weaves
shown in Figure 5a.

Fig. 5: Top view of three simplest 2-way 2-fold weaving structures and their
matrix representations [30]. Note that these are periodic, which means the ma-
trix repeats in each x and y direction. In these three cases, we show the min-
imum periods. These periodic structures can be viewed either as an infinite
plane that is periodically filled with these matrices as tiles; or a texture that is
mapped on toroidal surface[7, 6].

2. Previous Work

2-Way 2-Fold Fabrics such as plain, twill, and satin could

be considered the first composite structures in human history.

There are illustrations from ancient Egypt that show people

weaving fabrics using looms [11]. Large-scale woven structures

such as woven bridges have also been constructed for several

millennia [57, 56, 38, 39]. Basket weaving is another type that

has been around for a long time [43, 47, 26, 10]. Despite their

historical popularity, the construction of woven structures with

congruent space-filling tiles was not known or explored until

recently [40, 41]. The main problem with earlier woven tiles is

that each weaving pattern requires its own congruent tile. More-

over, these tiles can be arbitrarily long based on the periodicity

of the weaving pattern. This poses a serious challenge for phys-

ical production of these tiles, especially for cases such as satin

wherein each tile is significantly long. Moreover, creating these

tiles with common manufacturing processes such as milling or

laser cutting is impossible due to their complex geometry.

We seek to address these issues by developing a simple

method for obtaining all possible weaving patterns by using

rotated and translated versions of a single congruent tile. We

focus on representing 2-way, 2-fold weaving patterns that are

formally represented by Grunbaum and Shephard’s pioneering

work in the 1980s [30]. They developed a mathematical rep-

resentation for these weaving patterns using matrices of 0 and

1. These matrices that can be considered as two color images

as shown in Figure 5a provided methodologies to design and

discover new patterns. Using this representation, Grunbaum

and Shephard also demonstrated that weaving patterns that ap-

pear to be perfectly linked by visual inspection may not pro-

duce links that can make the woven structure to be hanged-

together [31, 32, 29, 27, 28]. In other words, in such struc-

tures some threads may not be linked with the rest of the fab-

ric and the resulting structures would come apart in pieces.

Grunbaum and Shephard call a weaving structure a fabric only

if it is hanging-together. After an extensive search, all hang-

together fabrics that are represented up to 17x17 matrices have

already been identified in the 1980s [31, 32, 15, 23, 16, 18].

There has also been extensive work on 2-way 2-fold fabrics

investigating their correspondences with 2D symmetry groups

[58, 59, 49, 53, 52, 51].

In Grunbaum and Shephard’s formalization [30], threads in

all types of fabrics are considered as strands, which are dou-

bly infinite open strips of constant width. These strands are

considered an infinitely long strip of paper or similar material

with zero or negligible thickness. They defined m-way n-fold

2D periodic fabrics, or (m,n) fabrics, as the ones that have the

strands in m different directions containing n number of layers

[33]. An m-way n-fold fabric is periodic if contains translations

of a fundamental region in at least two nonparallel directions.

They showed existence of (2, 2), (2, 4), (4, 4), (3, 3), (3, 6) peri-

odic 2D fabrics [33]. In other words, in 2-Way 2-Fold fabrics,
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the term 2-way comes from the fact that these fabrics consist

of two types of vertical or y-direction (warp) and horizontal or

x-direction (weft) threads. The term 2-fold comes from the fact

that any point in a 2D plane consists of two ordered strands that

are on top of each other, one strand at the top and another one at

the bottom. The fundamental region for 2-Way 2-Fold periodic

fabrics is a square grid, which can be represented as a matrix

that actually provides this order, which is also called ranking as

shown in some examples in Figure 5.

(a) Thickened Voronoi sites that correspond
to warp and weft threads for Twill weave.

(b) A twill weave that consist of yin-yang
type woven tiles that are obtained using
Voronoi sites in Figure 6a with decomposed
unit cells.

Fig. 6: An illustration that demonstrates how to construct twill by using two
types of unit elements that are obtained by mirror operations.

3. Theoretical Foundations & Methodology

One of the issues with Grunbaum and Shephard’s formal-

ization is that it is only useful for truly 2D weaves with zero-

thickness strands. In particular, ranking order can be very com-

plicated in higher dimensions. To develop a formalization for

3D threads with non-zero thickness, there is a need to identify

the 3D correspondences of the concept of strands, and unit cells

such that it is possible to provide a well-defined representation.

We note that a 3D version of matrix representation can be ob-

tained by reinterpreting unit cells as cubes instead of squares

and replacing strands with yin-yang type 3D tiles, and ranking

order with matrix transformations. Such yin-yang type woven

tiles can be obtained by decomposing the cubes using Voronoi

decomposition using higher order Voronoi sites such as lines

and curves [41, 40] (see Figure 3 for an example). These yin-

yang type tiles correspond to actual warp and weft threads. Re-

gardless of the shape of each tile, this interpretation guarantees

the existence of exactly two distinct states (one for warp and

another for weft). Therefore, we do not need the ranking order

in contrast to earlier parametrizations of weaves. Furthermore,

the two states can be transformed into each other with a ma-

trix transformation that provides a mirror in z1. This gives us

the cyclic group GF(2) where each element is either identity

matrix I or mirror in z, Mz, as follows:

I =

1 0 0
0 1 0
0 0 1

 Mz =

1 0 0
0 1 0
0 0 −1

 (1)

The advantage of having such a cyclic group is that we can

replace the group with one of its isomorphic groups to obtain

simplified operations. For instance, consider replacing identity

matrix I with 0, and mirror matrix Mz with 1. As a result, the

matrix multiplication turns into modulo 2 addition since I2 = I,

IMz = Mz, MzI = Mz, and M2
z = I. With these replacements,

we obtain the fundamental cyclic group GF(2) that directly cor-

responds to the original cyclic group of two matrices. This iso-

morphism also simplifies encoding of ranking orders. This sim-

plification turned out to be extremely useful for the formaliza-

tion of weaving tiles.

Using the group designed above, a fundamental domain for

2D weave can now be defined as 2D grids that consist of N × K

cubes (or voxels). We can identify each cube in this funda-

mental domain with two non-negative integers (n,m) where

n = 0, . . . ,N −1; and m = 0, . . . ,M−1 as C(n,m). Similar to ma-

trix representation, to define a fabric we assign either 0 or 1 to

each cube for all n and m. In other words, we define a discrete

periodic function F : {0, . . . ,N−1}×{0, . . . ,N−1} → {0, 1} that

can be represented as F(n,m). We can also define the discrete

derivative in x and y direction as δxF = F(n + 1,m) − F(n,m),

and δyF = F(n,m + 1) − F(n,m) respectively. Note that if the

derivative is zero there is no change. But if the derivative is one

we take a mirror in order to get the orientation of the next cell,

which corresponds rank order change in Matrix representation.

To present and analyze 2-way 2-fold weaving structures we

also need a simple mathematical notation that captures the

essence of the fundamental textile structures. It has been ob-

served that all possible versions of the three fundamental fabric

1In this case, 900 rotations around x or y can also provide desired states.
However, We prefer to choose a mirror in z since it makes better sense as a
general operation.
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types, i.e. plain, twill, and satin, can be viewed as a set of rows

with horizontal periodical patterns that are shifted and vertically

stacked over each other [14]. Grunbaum and Shephard called

these types of weaves genus-1 and used a (n, s) notation to clas-

sify these fabrics, where n is the length of a binary pattern and

s is the shift operator [30]. One problem with the (n, s) notation

is that it does not define the initial row pattern.

The three simplest fabric patterns in Figure 5 in (n, s) nota-

tion are (2, 1), (3, 1), and (4, 1). It is possible to identify the first

two. However, for (4, 1) the initial pattern is not uniquely deter-

mined. It can be either 3 up and 1 down, or 2 up and 2 down. As

a solution, another notation called a/b/c is introduced [14]. In

this notation, the initial pattern is defined by two integers a and

b, where a is the number of up-crossings, and b is the number

of down-crossings. The additional integer c denotes the shift in-

troduced in adjacent rows. Note that a + b correspond to n and

c corresponds to s in (n, s) notation. This notation differentiate

between two (4, 1) patterns as 3/1/1 and 2/2/1. Although this

notation solves the uniqueness problem for some simple cases,

it has limited power to describe more complex initial patterns

such as the ones that consist of several number different types

of up and down crossing that are followed each other.

We observe that there is a need for a new notation that

can provide group theoretical solutions to all ambiguities. To

achieve this, we simply replace n in (n, s) with a binary num-

ber N2 that represents up and down patterns. For instance, the

decimal number N10 = 2610 corresponds to the binary number

N2 = 110102, which represent a row of weaving structure that

is given as two up, one down, one up and one down. This can

be written using hexadecimal numbers to save space. For in-

stance, the three fabric patterns shown in Figure 5 can be given

in (N16, s) notation as (216, 1), (616, 1), and (C16, 1). We assume

the binary sequence starts with 1 to uniquely define the length

n. We also assume N2 is an even number, i.e. it ends with 0

to guarantee the row includes at least one change from one to

zero.

Fig. 7: Voronoi decomposition of the cube fundamental domain and resulting
partitions for different arc angles θ. From left to right, θ = 6◦, θ = 60◦, θ =
120◦, θ = 180◦, , θ = 240◦, θ = 330◦

3.1. Studying Voronoi Sites Closed Under Warp-Weft Symmetry

To develop a parametric solution, we have analyzed a variety

of Voronoi decomposition of the unit cube by using symmetric

Voronoi sites. To identify the potentially useful symmetry op-

erations we start with the mathematical concept of strands [33].

The symmetry operations that take warp strands to weft strands

and vice versa can be obtained by a 900 rotation in z followed

by a mirror in z (See 3a for local coordinates). These two oper-

ations can be given by the following composite matrix:

M =

0 −1 0
1 0 0
0 0 −1

 (2)

Note that the strands are mirror symmetric in x and y direc-

tions. If we strictly follow the concept of strands, the Voronoi

sites must also be mirror symmetric in both x and y directions.

Note that M alone does not enforce this condition. Note that

M2 cannot move all Voronoi sites into their original positions

since

M2 =

−1 0 0
0 −1 0
0 0 1

 (3)

and it is not an identity matrix. Therefore, in order to make

these Voronoi sites consistent, they should be self-mirror in x

and y. One such example of Voronoi sites is shown in Figure 3b.

This example consists of two half-circles that are closed under

matrix M. These particular curves create a boundary on the

surface of their sphere that resembles the curves on a tennis ball

(See Figure 3c). Figure 3d shows corresponding congruent tiles
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that decompose the unit cell. This particular case obviously

is one of the most natural solutions since the same boundary

curves on the sphere can also be observed on other spherical

surfaces such as basketball.

To identify other potential solutions we systematically ex-

plored the effect of a variety of symmetric curve- and surface-

type Voronoi sites on the unit sphere. Figure 7 provides a gener-

alization on tennis ball decomposition. In this case, we used two

circular arcs that are closed under both M and M2, i.e. closed

under warp-weft symmetry. Note that if the arc angle is zero,

the arc turns into a point and decomposition does not produce

a saddle. On the other hand, when arc length increases sad-

dle starts to appear. for angles around 1800, we obtain a strong

saddle. For arc angles closer to 3600 we still obtain saddles

that can theoretically be assembled and disassembled but it is

difficult because of friction. We also analyzed surface patches

that are closed under M and M2 This surface patches generally

produced a useful set of tiles with a saddle interface with an

exception of two half-spheres. These examples suggested that

being closed under M and M2 for Voronoi sites is useful to cre-

ate desired tiles.

We have also analyzed if this condition guarantees obtaining

desired tiles. Unfortunately, we observed that it is not guar-

anteed (1) to have the tiles that can be connected to the next

one and (2) to have the interface that may not be the saddle

when we use Voronoi sites that are closed under M and M2. In

other words, we cannot blindly apply the condition to be clo-

sure under V = M and M2. In conclusion, studying Voronoi

sites mainly helps us conceptualize the general structures of

the tiles. However, this study with Voronoi sites closed under

symmetry demonstrated that warp-weft symmetry is important

but neither necessary nor sufficient to obtain woven tiles. Note

that while Voronoi decomposition offers an elegant conceptual

basis, it does not explicitly guarantee connectivity and assem-

bly/disassembly conditions. However, Voronoi decomposition

naturally guarantees foldability by providing a piecewise devel-

opable interface. That said, obtaining reasonable folding pat-

terns may not be trivial for most resulting shapes. We need an

explicit solution that can let us control parameters directly. This

study of Voronoi decomposition was still useful for us since it

helped to develop an intuition to identify such a robust paramet-

ric solution.

(a) Geometrically interlocked boundary (b) Topologically interlocked boundary

Fig. 8: Cutting an unfolded cube with a curve demonstrate that the bound-
aries of the interface between the congruent tiles must create topologically in-
terlocked structures in 2D to satisfy assembly and disassembly condition. Note
that the top and bottom shapes in Figure 8b can freely move in y direction.

3.2. Studying Unfolded Boundary of the Cube

A good parametric solution also requires studying connectiv-

ity and assembly/disassembly conditions. Based on our study

of Voronoi decomposition, studying these two conditions can

directly be done in the boundary of the cube. For this study, we

consider an unfolded cube shown in Figure 8. The longer side

of this unfolding consists of four side squares of the cube. The

other two squares are just the top and bottom ones and we will

ignore them since they do not affect the two conditions. Now

consider the strip that consists of four squares. We can assign

a local 2D coordinate system to them, which is shown as two

arrows in Figure 8. Once we have a local 2D coordinate sys-

tem, it is straightforward to define curves. Now consider the

two curves in Figures 8a and 8b and assume that the shape is

cut through the curve. It is clear that the two 2D shapes in Fig-

ure 8a cannot be separated without going to 3D, which is the

definition of geometric interlocking for 2D objects [24]. On the

other hand, the two 2D pieces in Figure 8b can be disassem-

bled in the y direction without the need for disassembly in 3D.

This is because the second curve is given by a function on the

form y = f (x), i.e. it has only one y value for every x. In other

words, if there exists a local coordinate system such that the

boundary curve can be written as a function, we guarantee to

assemble and disassemble the pieces. Note that there still exist
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(a) Generic piecewise linear
curve that is closed under
Warp-Weft Symmetry.

(b) A tetrahedral polygon
that is obtained by choosing
a = 1 and b = 0.

(c) Another control polygon
that is obtained by choosing
a = 1 and b = 1.

Fig. 9: Parameterized control polygon (hexadecagon, i.e. 16thgon) and two
extreme cases. Note that the polygon in 9b is also 16-sided since each point
consists of two coincident points.

(a) The parameters a = 1.0 and b = 0.0 (b) The parameters a = 1.0 and b = 0.25

(c) The parameters a = 1.0 and b = 0.5 (d) The parameters a = 1.0 and b = 0.75

(e) The parameters a = 1.0 and b = 1.0 (f) The parameters a = 0.75 and b = 1.0

(g) The parameters a = 0.5 and b = 1.0 (h) The parameters a = 0.25 and b = 1.0

(i) The parameters a = 0.75 and b = 0.75 (j) The parameters a = 0.5 and b = 0.5

Fig. 10: Congruent woven tiles generated with piecewise linear curves

other curves that allow assembly and disassembly such as the

one shown in Figure 9c.

Although the warp-weft symmetry is not strictly required, we

still prefer to use it since it gives us a well-defined framework.

If we impose warp-weft symmetry, these functions must be pe-

riodic such as a sine function shown in Figure 8b. Such a sine

function is appropriate since the resulting tiles can also satisfy

the connectivity condition. Note that the connectivity condition

suggests that the curve partition each square into unequal areas

preferably providing a large common area between two consec-

utive tiles in the same thread.

The discussion in the last two sections provides a qualita-

tive framework to develop a family of parametric curves that

can allow us to directly create congruent tiles using an explicit

approach. In the next section, we present one approach to con-

struct such a family of parametric curves. We need to point out

that although this particular approach provides a large set of so-

lutions, there can be others. For instance, we can also provide

another family using trigonometric functions by generalizing

the sine curve in Figure 8b.

3.3. A Family of Parametric Curves Closed Under Warp-Weft
Symmetry

In this section, we present our parametric family that can

guarantee to provide tiles that can satisfy all conditions, based

on the intuitions developed by explorations with Voronoi de-

compositions and unfolded cubes. We have identified a piece-

wise linear curve that form an hexadecagon (16-sided polygon)

that can be described by two parameters, called a and b, as

shown in Figure 9a. This polygon is still closed under warp-

weft symmetry. The corners of this set of parameterized poly-

gons include vertices of both tetrahedron (Figure 9b) and cube

(Figure 9c). Figure 10 shows the effect of the two parameters

a and b. To satisfy connectability condition a must be bigger

than for certain threshold determined by the sizes of connec-

tors. Since the saddle shapes become more prominent for larger

values of a we suggest keeping a > 0.5. Such larger values of

a are also useful to increase the interface between two consec-

utive tiles in the same thread.
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(a) Polygon in 9a after one it-
eration of corner cutting sub-
division.

(b) Polygon in 9b after one
iteration of corner cutting
subdivision.

(c) Polygon in 9c after one it-
eration of corner cutting sub-
division.

Fig. 11: Examples of smoothed control polygons after one iteration of corner
cutting subdivision [22].

(a) The parameters a = 1.0 and b = 0.0 (b) The parameters a = 1.0 and b = 0.25

(c) The parameters a = 1.0 and b = 0.5 (d) The parameters a = 1.0 and b = 0.75

(e) The parameters a = 1.0 and b = 1.0 (f) The parameters a = 0.75 and b = 1.0

(g) The parameters a = 0.5 and b = 1.0 (h) The parameters a = 0.25 and b = 1.0

(i) The parameters a = 0.75 and b = 0.75 (j) The parameters a = 0.5 and b = 0.5

Fig. 12: Congruent woven tiles generated with piecewise linear curves that are
created by vertex-insertion scheme [13].

To obtain smoothed shapes, we consider these hexadecago-

nal polygons as control polygons that can be refined smoother

versions by using subdivision schemes of B-spline curves. Fig-

ure 11 shows examples of smoothed control polygons in one

iteration of corner-cutting subdivision, which is 2D version of

Doo-Sabin subdivision [22]. It is also possible to use vertex-

insertion, which is 2D version of Catmull-Clark subdivision

[13]. The application of these subdivision schemes for k times

creates a polygon of 16 × 2k corners. Figure 12 shows woven

tiles obtained by using polyhedra smoothed by vertex insertion.

Note that in the case of a = 1 and b = 0 in the vertices of

the tetrahedron, there are two coincident points of the polygon.

Therefore, the standard corner-cutting algorithm cannot smooth

this shape in the first iteration as shown in Figure 11b. The algo-

rithm for the computation of the multi panel foldable interface

is provided by the following algorithm.

Algorithm for the Creation of Foldable Interface:

(1) Compute positions of two points in each square based on

Figure 9 0 < a ≤ 1 and 0 < b ≤ 1. Remark: There will be 16

points and these points will be closed under M and M2.

(2) Apply a subdivision scheme n times to obtain 16×2n points.

(3) Shoot a ray from the center of the cube toward the com-

puted corners of 16 × 2n-gon to find the intersections with the

boundary of the cube.

(4) Construct a new polygon by connecting new positions. If

two consecutive positions are in two different faces of the cube

add a new (interpolated) point in the intersection of the two

faces. The new polygon will have at least 16 × 2n corners.

(5) Triangulate the new polygon connecting all corners to the

center of the cube. This gives us the interface that decomposes

the cube into two tiles. Remark: The center of the cube is also

the center of this polygon because of warp-weft symmetry.

3.4. Foldable Woven Tiles

Connecting the parametric curve with the center point guar-

antees to obtain an foldable interface between two congruent

tiles. Since the rest of the boundaries of the tiles comes from the

surface of the unit cube, the resulting tiles are guaranteed to be a

multi panel foldable since it consists of planar and multi panel
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Fig. 13: Folding (and unfolding) of a woven tile. Note that although this shape
can be unfolded into a single panel, this single panel actually consists of three
panels that are “merely” connected with each other. This is a shape that is
obtained from a smooth curve that approximates the control polygon that cor-
responds to a = 1 and b = 1.

foldable faces that approximate developable surfaces. Having

this property is useful since custom-cut developable panels pro-

vide an alternative to 3D printing. Despite their advantages,

there is a major problem with developable shapes. Unfold-

ing a developable shape into a single flat surface, i.e. single

panel solutions, is a computationally very hard problem. For

instance, it is known that Edge-Unfolding Orthogonal Polyhe-

dra are Strongly NP-Complete [1]. Even simple-looking sub-

problem such as Packing Squares into a Square are strongly NP-

complete [42]. More interestingly, whether every convex poly-

hedron can be cut along its edges and flattened into the plane

without any overlap is still one of the classical open problems

in geometry [17]. Despite this theoretical difficulty, there ex-

ists no known convex polyhedron that cannot be unfolded with-

out self-intersection [20, 46]. On the other hand, it is already

proven that not all convex-faced polyhedra can be unfolded into

a single flat surface [12].

For many non-convex polyhedra finding single unfolding so-

lutions -if they exist- can take a significant amount of work

[44, 19]. On the other hand, for many complicated non-convex

polyhedra with convex faces, the solutions are known to ex-

ist. For instance, non-self-intersecting single-panel unfolding

solutions are known for some genus-1 surfaces. Our shapes

are similarly complicated since they all include saddle inter-

faces and some may include non-convex faces (See Figure 13).

Fig. 14: Folding (and unfolding) a woven tile with planar faces that is obtained
by using a = 1 and b = 1.

Therefore, it is expected that it can be difficult to find solutions

even if the solutions exist. Fortunately, we were able to find

a method to obtain non-self-intersecting single panel unfolding

solutions for all our parametric congruent tiles. See Figure 13

for one of the most difficult examples. In this case, the solution

is formally a single panel, but the three pieces have very few

connections. If we have a truly developable surface, they will

not have any connections. Therefore, our algorithm is really a

type of multi-panel solution that give loosely connected single

panels.

Fig. 15: Folding (and unfolding) a woven tile with planar faces that is obtained
by using a = 1 and b = 0.

Unfolding Algorithm:

(1) Separate the shape into two parts: (1) Cube boundaries,

and (2) Saddle interface. Remark: Note that the saddle inter-

face cannot be unfolded into a single non-overlapping flat piece

since its vertex defect is negative [5].

(2) Decompose saddle interface into multiple pieces.

(3) Attach those pieces to the main body that is obtained by
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unfolding cube boundaries.

Figure 13 shows an example that uses this algorithm in which

the complicated saddle region is decomposed into two pieces

that can be unfolded without overlapping. Figures 14 and 15

provide two more examples in which the saddle regions are de-

composed into multiple triangles. We want to point out that

the solution in Figure 13 exists only because we do not have a

smooth curve. In the limit, the connections in edges will ap-

proach zero and we cannot have a single panel solution any-

more. On the other hand, we want to point out that multi-panel

unfolding and origami can always be considered viable options

[35, 9, 34].

4. Implementation and Results

Our modular approach of obtaining any weaving pattern by

using a single tile has both topological and geometric limita-

tions. The topological limitation directly comes from a 2-way

2-fold constraint. To obtain any possible weaving pattern, the

underlying mesh, regardless of its geometry, must be a quad-

pattern cover-able quad mesh [37]. In fact, any positive genus

surface can be turned into a quad-pattern cover-able quad mesh

[37]. These mesh structures also include topological square

grids, i.e. (4, 4) structures where every valence is 4, and ev-

ery face is a quadrilateral. We also need to point out that plain

weaving patterns do not have this topological requirement. Any

mesh can be covered with alternating knots, i.e. plain weaving,

by turning their edges into quadrilaterals [8, 6, 4, 7]. In conclu-

sion, to obtain any 2-way, 2-fold weaving pattern, it is sufficient

to start with a (4, 4) mesh structure.

The (4, 4) mesh structures are common in many places. For

instance, height fields and tensor product surfaces can always

be represented as (4, 4) mesh structures. Therefore, those sur-

faces can topologically be covered with 2-way 2-fold weaving

patterns. On the other hand, in these cases, the geometrical

constraints on the shape of surfaces play an important role. As

discussed, if the shape of the slab is a plane, we can always ob-

tain any weaving pattern using only one modular element. If the

shape is a cylinder, we can obtain all weaving patterns with four

modular elements. If the shape is arbitrary, each weaving pat-

tern requires a specific solution. To demonstrate this, we show

a few select examples.

(a) ((102, 1) Plain woven planar slab. (b) ((11002, 1) Twill woven planar slab.

(c) ((111111102, 3) Satin woven planar
slab.

(d) ((110102, 1) Twill woven planar slab.

Fig. 16: Examples of Planar slabs.

4.1. Planar Slabs with 2-way 2-fold Weaving Patterns

Creation of planar slabs with any 2-way 2-fold weaving pat-

terns is relatively easy. We can use any single tile in Figures 10

or 12 to construct any weaving pattern. We show several vir-

tual and printed examples in Figure 16 created using the single

tiles from Figure 12e. We have also physically built a variety

of weaving patterns using modular tiles, as shown in Figure 1.

Since it is weaving patterns creates within planar slabs, there is

always a solution with our modular tiles.

4.2. Cylindrical Surfaces with Semi Congruent Tiles

An especially interesting case for our approach is cylinders.

Columns, which are one of the most common building struc-

tures, are essentially cylinders. We found that any weaving pat-

tern on a cylinder can be constructed using four unique tiles,

as shown in Figure 17. The cylinder case clearly demonstrates

the structure of the different weaving patterns. To demonstrate

the difference in warp and weft structures for different weaving

patterns, we have provided warp and weft threads separately

in Figure 18. In woven cylinders shown in Figure 18a and Fig-

ure 18b, warp threads form circles, and weft threads are straight

elements that run along horizontally in a column structure.

4.3. Height Fields with Non-Congruent Tiles

To generalize our approach to more complicated geometries,

we need to extend cubes to more general cuboids, which are
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Fig. 17: 4 different tiles needed for constructing a cylindrical surface.

(a) ((102, 1) Plain woven cylinder. (b) ((11002, 1) Twill woven cylinder.

(c) ((111111102, 3) Satin woven cylinder. (d) ((110102, 1) Twill woven cylinder.

Fig. 18: Cylindrical surfaces constructed with semi-congruent tiles. The top
row shows the complete assembly of tiles. The middle and bottom rows show
warp and weft assemblies.

(a) ((102, 1) Plain woven height field. (b) ((11002, 1) Twill woven height field.

(c) ((111111102, 3) Satin woven height
field.

(d) ((110102, 1) Twill woven height field.

Fig. 19: An example of woven height fields constructed with non-congruent
tiles.

six-faced solids (i.e, hexahedra) with convex and planar quadri-

lateral faces such as rectangular prisms, rhombohedra, paral-

lelepipeds, or trigonal trapezohedron [48]. The resulting tiles

may not necessarily be congruent, but their mesh structures are

homeomorphic. Moreover, they can still be unfolded. Any

curved slab can be decomposed into cuboids connected with

(4, 4) mesh structures.

Now, consider a curved slab that is defined as

z = {(x, y, z)|h(x, y) − T ≤ z ≤ h(x, y) + T }

where 2T is the thickness of the slab and z = h(x, y) is a height

field that is given by any function where 0 ≥ x ≥ M and 0 ≥

y ≥ N with M and N are two positive integers. Such a slab

can be decomposed into desired cuboids with planar faces just

sampling x and y in integer locations n ∈ 0, . . . ,N and m ∈

0, . . . ,M. Let pm,n,i, j,k denote the eight corners of this cuboid

shape, where (i, j, k) ∈ {0, 1}3, the position of each corner is

given by the following equation:

pm,n,i, j,k = h(m + i, n + j) + (2k − 1)T

Note that this cuboid is bounded by four planes, namely x =

m, x = m + 1, y = n, and y = n + 1. Figure 19 shows two

height fields constructed using four weaving patterns. In this

case, we can always obtain woven tiles using these four faces

to define the saddle curve described in Figure 9a. Note that

the top and bottom faces may not be planar. Those faces must

be decomposed into foldable surfaces, such as two triangles, to

unfold the resulting tiles.
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5. Conclusion and Future Work

In this work, we demonstrated that modular elements exist

to construct all 2-way 2-fold woven planar slab structures. By

decomposing cubed into two yin-yang type identical tiles mod-

ular solutions, we have also shown that these modular solutions

are not unique. There exist infinitely many interesting mod-

ular elements that can be created by using two parameters and

smoothing operators. The shapes of these modular elements are

naturally foldable. In other words, they all can be folded from

single or multiple flat panels.

These tiles can potentially cover any slab obtained from a 2-

manifold surface. However, because of topological restrictions

from the mesh topology, it is only possible to obtain plain weav-

ing patterns [8, 6, 7]. On the other hand, it is possible to cre-

ate large regions of (4, 4) tilings by using subdivision schemes

such as vertex intersection or corner cutting. In these regions,

it is possible to obtain desired patterns by moving irregularities

around extraordinary vertices [4]. Since this is a well-known re-

sult, we did not discuss it in the paper, and we do not think there

is a need for further research in this direction. Once the pattern

is known and slab geometry does not include self-intersections,

it can be possible to create woven tiles.

One interesting research direction is additional connector el-

ements and congruent tiles to obtain curved slabs. We suspect

that by adding a limited number of cylindrical connectors, it

could be possible to obtain curved regions with a limited num-

ber of tiles by using an organization reminiscent of quad-edge

data structure [9]. One problem with this approach is that fi-

nal structures have small holes that correspond to the faces and

vertices of the original meshes, which could be filled by vari-

ous methods. However, these practical issues are not directly

related to computer-aided geometry.

Another interesting research direction is to use tiles of dif-

ferent materials to obtain a variety of architectured material

structures. In fabrics, different patterns are obtained by col-

oring threads. For instance, just with twill, one can obtain pat-

terns that are known to herringbone, houndstooth, serge, shark-

skin, flannel cavalry, chino, covert, denim, drill, or gabardine

[25, 55, 54]. In this case, we can have more flexibility since

each tile (instead of the whole thread) can have different mate-

rials. In the near future, our goal is to take our method, which

is currently computational and theoretical, and work with ar-

chitects and engineers through physical construction as well as

finite-element studies of our tiles. We believe that this work

opens up new avenues to further investigate practical applica-

tions of modular woven tiled to construction science, mechan-

ics, and other domains.

References

[1] Zachary Abel and Erik D Demaine. Edge-unfolding orthogonal polyhedra
is strongly np-complete. In CCCG, 2011.

[2] Adi Adumitroaie and Ever J Barbero. Stiffness and strength prediction
for plain weave textile reinforced composites. Mechanics of Advanced
Materials and Structures, 19(1-3):169–183, 2012.

[3] Tevfik Akgün, Ahmet Koman, and Ergun Akleman. Developable sculp-
tural forms of ilhan koman. In Bridges London: Mathematics, music, art,
architecture, culture, pages 343–350, 2006.

[4] Ergun Akleman, Jianer Chen, YenLin Chen, Qing Xing, and Jonathan L
Gross. Cyclic twill-woven objects. Computers & Graphics, 35(3):623–
631, 2011.

[5] Ergun Akleman, Jianer Chen, and Jonathan L Gross. Strip sculptures. In
2010 Shape Modeling International Conference, pages 236–240. IEEE,
2010.

[6] Ergun Akleman, Jianer Chen, and Jonathan L Gross. Extended graph
rotation systems as a model for cyclic weaving on orientable surfaces.
Discrete Applied Mathematics, 193:61–79, 2015.

[7] Ergun Akleman, Jianer Chen, Jonathan L Gross, and Shiyu Hu. A topo-
logically complete theory of weaving. SIAM Journal on Discrete Mathe-
matics, 34(4):2457–2480, 2020.

[8] Ergun Akleman, Jianer Chen, Qing Xing, and Jonathan L Gross. Cyclic
plain-weaving on polygonal mesh surfaces with graph rotation systems.
ACM Transactions on Graphics (TOG), 28(3):1–8, 2009.

[9] Ergun Akleman, Shenyao Ke, You Wu, Negar Kalantar, AliReza Borhani,
and Jianer Chen. Construction with physical version of quad-edge data
structures. Computers & Graphics, 58:172–183, 2016.

[10] Changyeob Baek, Alison G Martin, Samuel Poincloux, Tian Chen, and
Pedro M Reis. Smooth triaxial weaving with naturally curved ribbons.
Physical Review Letters, 127(10):104301, 2021.

[11] Edward Baines. History of the cotton manufacture in Great Britain. Cam-
bridge University Press, Cambridge, UK, 2015.

[12] Marshall Bern, Erik D Demaine, David Eppstein, Eric Kuo, Andrea
Mantler, and Jack Snoeyink. Ununfoldable polyhedra with convex faces.
Computational Geometry, 24(2):51–62, 2003.

[13] Edwin Catmull and James Clark. Recursively generated b-spline surfaces
on arbitrary topological meshes. Computer-aided design, 10(6):350–355,
1978.

[14] Yen-Lin Chen, Ergun Akleman, Jianer Chen, and Qing Xing. Designing
biaxial textile weaving patterns. In Hyperseeing: Special Issue on ISAMA
2010-Ninth Interdisciplinary Conference of the International Society of
the Arts, Mathematics, and Architecture, pages 53–62, 2010.

[15] C.R.J. Clapham. When a fabric hangs together. Bulletin of the London
Mathematics Society, 12:161–164, 1980.

[16] C.R.J. Clapham. The bipartite tournament associated with a fabric. Dis-
crete Mathematics, 57:195–197, 1985.

[17] Hallard T Croft, Kenneth Falconer, and Richard K Guy. Unsolved prob-
lems in geometry: unsolved problems in intuitive mathematics, volume 2.
Springer Science & Business Media, 2012.

[18] C. Delaney. When a fabric hangs together. Ars Combinatoria, 15:71–70,
1984.

[19] Erik D Demaine, Martin L Demaine, and Joseph SB Mitchell. Folding
flat silhouettes and wrapping polyhedral packages: New results in com-



T. Yildiz, E. Akleman and V.R. Krishnamurthy et al. /Computers & Graphics (2023) 15

putational origami. In Proceedings of the fifteenth annual symposium on
Computational geometry, pages 105–114, 1999.

[20] Erik D Demaine and Joseph O’Rourke. Geometric folding algorithms:
linkages, origami, polyhedra. Cambridge university press, 2007.

[21] Lee Djumas, George P Simon, Yuri Estrin, and Andrey Molotnikov. De-
formation mechanics of non-planar topologically interlocked assemblies
with structural hierarchy and varying geometry. Scientific reports, 7(1):1–
11, 2017.

[22] Daniel Doo and Malcolm Sabin. Behaviour of recursive division surfaces
near extraordinary points. Computer-Aided Design, 10(6):356–360, 1978.

[23] T. Enns. An efficient algorithm determining when a fabric hangs together.
Geometriae Dedicata, 15:259–260, 1984.

[24] Yuri Estrin, Vinayak R Krishnamurthy, and Ergun Akleman. Design of ar-
chitectured materials based on topological and geometrical interlocking.
Journal of Materials Research and Technology, 15:1165–1178, 2021.

[25] Loe M. G. Feijs. Geometry and computation of houndstooth (pied-de-
poule). In Robert Bosch, Douglas McKenna, and Reza Sarhangi, edi-
tors, Proceedings of Bridges 2012: Mathematics, Music, Art, Architec-
ture, Culture, pages 299–306, Phoenix, Arizona, 2012. Tessellations Pub-
lishing.

[26] Iulia Georgescu. Weaving smooth 3d shapes with curved ribbons. Nature
Reviews Physics, 3(9):607–607, 2021.

[27] R. E. Griswold. Color complementation, part 1: Color-alternate weaves.
Web Technical Report, Computer Science Department, University of Ari-
zona, 2004.

[28] R. E. Griswold. From drawdown to draft: A programmer’s view. Web
Technical Report, Computer Science Department, University of Arizona,
2004.

[29] R. E. Griswold. When a fabric hangs together (or doesn’t). Web Technical
Report, Computer Science Department, University of Arizona, 2004.

[30] B. Grunbaum and G. Shephard. Satins and twills: an introduction to the
geometry of fabrics. Mathematics Magazine, 53:139–161, 1980.

[31] B. Grunbaum and G. Shephard. A catalogue of isonemal fabrics. Annals
of the New York Academy of Sciences, 440:279–298, 1985.

[32] B. Grunbaum and G. Shephard. An extension to the catalogue of isonemal
fabrics. Discrete Mathematics, 60:155–192, 1986.
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