
CONSTRUCTION OF PLANAR AND SYMMETRIC TRUSS
STRUCTURES WITH INTERLOCKING EDGE ELEMENTS

A PREPRINT

Anantha Natarajan
Departments of Visualization

Texas A&M University
College Station, Texas 77831

ananthanatarajan@tamu.edu

Jiaqi Cui
Departments of Visualization

Texas A&M University
College Station, Texas 77831

jiaqi96@tamu.edu

Ergun Akleman∗

Departments of Visualization &
Computer Science and Engineering

Texas A&M University
College Station, Texas 77831
ergun.akleman@gmail.com

Vinayak Krishnamurthy
Departments of Mechanical Engineering &

Computer Science and Engineering
Texas A&M University

College Station, Texas 77831
ergun.akleman@gmail.com

June 22, 2021

ABSTRACT

In this paper, we present an algorithmic approach to design and construct planar truss structures based
on symmetric lattices using modular elements. The method of assembly is similar to Leonardo grids
as they both rely on the property of interlocking. In theory, our modular elements can be assembled
by the same type of binary operations. Our modular elements embody the principle of geometric
interlocking, a principle recently introduced in literature that allows for pieces of an assembly to
be interlocked in a way that they can neither be assembled nor disassembled unless the pieces are
subjected to deformation or breakage. We demonstrate that breaking the pieces can indeed facilitate
the effective assembly of these pieces through the use of a simple key-in-hole concept. As a result,
these modular elements can be assembled together to form an interlocking structure, in which the
locking pieces apply the force necessary to hold the entire assembly together.

(a) (b) (c) (d)

Figure 1: Design and Fabrication of modular elements to construct 2D frames: (a) Design of Hexagonal frame, (b)
Physical Assembly after fabrication, (c) Design of Quadrilateral frame, (d) Physical Assembly after fabrication
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1 Introduction and Motivation

History is rich with examples of puzzle-like interlocking structures that have been studied under the concepts of
stereotomy [11, 12, 13], Leonardo grids or Nexorades [4, 7], and topological interlocking [10, 9]. One of the most
remarkable examples of interlocking structures is the Abeille flat vault, which was designed by the French architect and
engineer Joseph Abeille [14, 3]. Leonardo grids or Nexorades are structures that are constructed using notched rods
that fit into the notches of adjacent rods resembling fabric weaves [18, 16].

(a) (b) (c) (d)

Figure 2: (a) Connector, (b) Truss Edge, (c) Creation of Edge Element, (d) Basic Edge Element

(a) (b) (c) (d)

Figure 3: Three types of interlocking Edge Elements and key pieces to construct 2D hexagonal frames: (a) Two views of
a basic Edge Element, (b) Edge Element where one end is replaced by key, (c) Edge element with two keys, (d) Split
Interlocking Connector that can locked by a key.

Symmetric patterns, such as Islamic ornaments, Ogee shapes, or Celcic knots, have been abundantly utilized as artistic
decorations in architectural and sculptural design [8, 5]. The symmetry in these patterns essentially allows for repetitions
of geometric elements, thereby providing a sense of rhythm and aesthetic.

In this work, we have developed a new concept to produce symmetric 2D patterns that are constructed as interlocked
truss structures. Our concept is based on designing modular Edge Elements that can be assembled to create symmetric
planar trusses and frames. These modular Edge Elements support each other by virtue of their geometry without the
need for any adhesive or binding materials. Our underlying principle is to decompose the joints of a given truss/frame
as a set of interlocking shapes. These interlocking shapes which we call Connectors, in combination with the edges of
the truss, result in Edge Elements (Figure 2). These Edge Elements can be connected with each other to physically
build the truss (Figure 4). While we demonstrate these Edge Elements through examples of trusses based on uniform
and regular planar tessellations, our approach as such can be easily expanded for complex 3D trusses to create free form
and free spanning grid shell structures and architectural designs such as Islamic patterns (See Figure 5).

2 Previous Work

Our Edge Elements are inspired from our recent methodology for designing interlocking structures using higher-
dimensional Voronoi sites [19, 3]. Allowing any type of shape to serve as Voronoi sites provides a simple and
systematic design methodology to construct a large variety of interlocking structures for any volumetric domain in
3-space. Based on this point of view, the key parameters are essentially the topological and geometric properties
of Voronoi sites and their overall arrangements that are usually be obtained by symmetry transformations (rotation,
translation, and mirror operations). The types of shapes that serve as Voronoi sites and their transformations uniquely
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(a) (b) (c)

Figure 4: Assembly of Edge Elements shown in Figure 3 to construct of 2D hexagonal frames: (a) Assembly of a three
sided corner that use all types of Edge Elements, (b) Assembly of a three sided corner that use two basic Edge Element
and one Edge Element with two keys, (c) Assembly of one hexagon. This structure can indefinitely be extended to form a
hexagonal grid

(a) (b) (c)

Figure 5: An Islamic pattern generated by our methodology: (a) Two types of toroidal decomposition, (b) Pattern
created using straight edges and both types of toroidal decomposition, (c) The same pattern created with bent edges
and one type of toroidal decomposition

determine the properties of how the space is partitioned. For instance, let us consider certain special types of partitions
such as Delaunay’s Stereohedra [6, 17], the Delaunay lofts, generalized Abeille tiles, and bi-axial woven tiles [19, 3, 15].

For Stereohedra, the shapes of Voronoi sites are points, 3D L2 norm is used for distance computation, underlying space
is 3D, and any symmetry operation in 3D is allowed [6, 17]. Based on these properties, we conclude that Stereohedra
can theoretically represent every convex space-filling polyhedra in 3D. Since the points are used as Voronoi sites, and
L2 norm is used, the faces must be planar, and edges must be straight in the resulting Voronoi decomposition of the 3D
space.

For Delaunay lofts, on the other hand, the shapes of Voronoi sites are curves that are given in the form of x = f(z)
and y = g(z), for every planar layer z = c where c is a real constant, a 2D L2 norm is used to compute distance,
underlying space is 2.5 or 3D, and only 17 wallpaper symmetries are allowed in every layer z = c [19]. Based on these
properties, we conclude that Delaunay lofts (1) consist of stacked layers of planar convex polygons with straight edges,
and (2) in each layer, there can be only one convex polygon. In Delaunay lofts, the number of sides of the stacked
convex polygons can change from one layer to another. In conclusion, the faces of the Delaunay lofts are ruled surfaces
since they consist of sweeping lines. Edges of the faces can be curved. For generalized Abeille tiles, Voronoi sites can
be ruled surfaces or tree-structures, which can significantly extend design space [3]. However, they do not provide
geometric interlocking properties.
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If the shapes of Voronoi sites are curve segments obtained by decomposing planar periodic curves that are closed under
symmetries of bi-axial weaving patterns, the result becomes geometrically interlocking assemblies such as Bi-axial
woven tiles [15]. In this paper, we use this particular type of Voronoi decomposition to create our Connectors. Using
these Connectors as basic building blocks, we construct all types of fundamental modular blocks that we call Edge
Elements (see Figure 3).

3 Methodology

Our process starts with a planar graph that represents the truss/frame topology. In this paper, we demonstrate the
basic idea through the square and regular hexagonal grids as our truss topology. In our process, all edges of the grid
are replaced by square prisms, and all vertices are replaced by a 1-holed toroidal surface with a square cross-section.
This toroidal surface is constructed by rotating a square about an axis parallel to a vertical side of the square for a
given radius. The toroidal surface encloses a volumetric domain that serves as the interlocking region. Our goal is to
decompose this volumetric domain into geometrically interlocked pieces. There exists a variety of methods to obtain
topologically, or geometrically interlocking pieces for a given domain, such as Delaunay lofts [19], generalized Abeille
tiles [3], or bi-axial woven tiles [15]. In this work, we decompose the domain using an extension of the method that
is used to design bi-axial woven tiles. Our process decomposes the toroidal volumetric domain into geometrically
interlocking woven tiles which we call Connectors and use these Connectors to create Edge Elements, and it consists of
five steps.

(a) (b) (c) (d)

(e) (f) (g)

Figure 6: Visuals that demonstrate the steps of the process: (a) The initial 1-holed toroidal surface with a square cross
section, (b) Sinusoidal curves as Voronoi Sites, (c) Voronoi decomposition of the toroidal domain using Sinusoidal
curves as Voronoi Sites, (d) One of the Connectors (red one) must be further decomposed, (e)The red Connector is
further decomposed to be used as locking pieces, (f) Assembly process, (g) Complete assembly of Connectors

1. Voronoi Site Generation: The key step in our process is the generation of higher dimensional Voronoi sites. In
this case, we use sinusoidal curves as the higher dimensional Voronoi sites to create geometrically interlocking
pieces. The number of rotations and the rotation angles depend on the grid pattern to be constructed. For
regular hexagonal grids, each vertex is shared by three hexagons. The angle between the edges that share the
same vertex is 120 degrees. The toroidal domain at this vertex (Figure 6a) should be decomposed into three
identical geometrically interlocking pieces that can be attached to a polygon edge. This means that the initial
sinusoidal curves must be rotated 120 degrees about the toroidal domain’s axis of revolution. Performing
this rotation 3 times gives us three sinusoidal curves that are non-intersecting and non-planar (see Figure 6b).
These curves are then deformed uniformly from the axis of revolution to match the horizontal curvature of the
torus. For a vertex with a different valency, the weave pattern generated can be adjusted to create geometrically
interlocking tiles by changing the length, amplitude, amount of deformation and number of the curves.

2. Voronoi Decomposition to Obtain Connectors: Voronoi decomposition is generally described for points as
Voronoi sites. In order to compute Voronoi decomposition for our sinusoidal curves, we draw from previous
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(a) (b) (c) (d)

(e) (f) (g)

Figure 7: Interlocking Edge Elements and key pieces to construct 2D quadrilateral frames: (a) A basic Edge Element
for quadrilateral grid, (b) One sided locking Edge Element, (c) Two sided locking Edge Element, (d) Split Connector
tiles, (e) An assembly of a four sided corner that use all the pieces, (f) Another assembly of a four sided corner that use
all the pieces, (g) A complete assembly of a single quadrilateral

works [19, 3, 15] and sample points on these curves. We subsequently label all the points belonging to the
same curve into a cluster. As a result, we obtain a group of co-labeled Voronoi sites for each curve. We
then obtain Voronoi decomposition of the domain using these points. This process decomposes the domain
into convex polyhedral regions. Taking the union of the Voronoi cells corresponding to co-labeled sites (i.e.,
sites belonging to the same curve) results in the partitioning of the toroidal domain into three interlocking
woven tiles (Connectors) in a hexagonal grid case. The shapes of these Connectors are identical because of
the rotational symmetry of the curves (See Figure 6b). Remark: For constructing a square grid pattern, the
domain is decomposed into 4 identical Connectors, which means the sinusoidal curve is rotated 90 degrees 4
times to produce 4 non intersecting, non-planar control curves.

3. Creation of Locking Pieces by Cutting one of the Connectors: The resulting structure is geometrically
interlocking (shown in Figure 6c), and it cannot be assembled without cutting one of the Connectors. We
therefore choose one Connector (See the red tile Figure 6d) and decompose it into three pieces. In our
implementation, decomposition is achieved by vertically splitting the Connector into two equal halves with
a socket to house the locking peg (See the decomposition in Figure 6e). The pair of half tiles serve as the
locking pieces. The peg that is vertically and horizontally centered is shared between the halves and plays the
role of a key that holds the assembly(See Figures 6f and 6g).

4. Creation of Edge Elements The interlocking Connectors are joined together by a square tube to obtain Edge
Elements. The side of the square tube is equal to the side of the cross-section of the toroidal domain. Apart
from the locking pieces mentioned in the previous step, there are three types of Edge Elements needed to
create any grid pattern. The basic Edge Element type is constructed by attaching a Connector (the original
tiles obtained by Voronoi decomposition) to both ends of a square tube. In addition, there are two locking
Edge Element types- (1) one-sided locking Edge Element - square tube with the interlocking Connector on
one end and a locking peg on the other (2) two-sided locking Edge Element - square tube with a locking peg
on both ends.

5. Printing and Shape Assembly In order to construct physical assemblies of truss structures, we printed
multiple copies of each type of Edge Element and assembled them to create structures as shown in Figures 4a
and 4b. This assembly is repeated multiple times as needed and put together to create the grid pattern as
shown in Figure 4c. We have created two types of grids: regular hexagon and square as shown in Figures 4c
and 7g respectively. In order to create square grid, we designed the Connectors using four sinusoidal curves
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and printed the Edge Elements similarly (Figure 6a, 6b, 6c, 6d). Resulting vertex assemblies are shown in 7e
and 7f and grid assembly is shown in 7g.

4 Discussion

Our preliminary observations show that locking the connectors with keys results in a stable and sturdy assembly. The
main advantage of this method is that our Edge Elements can be duplicated economically by mass production such
as casting. The modular property of our Edge Elements makes transportation and construction simpler. Our Edge
Elements makes the creation of symmetric patterns in architectural and sculptural structures efficient. In a different
perspective, they can also be used as construction toys that can help build cognitive ability in kids. However, this work
is still preliminary, and there is a lot more that can be done to extend this work. We list some of these extensions that
can be practically useful below.

• Trusses based on Uniform Regular Tessellations: Our method is not limited to regular mesh structures such
as square or regular hexagonal grids. The idea in this paper can be generalized to any grid in which all the
vertices are isometric with each other. The simplest of such grids are rectangular grids. This space of grids is
very rich. However, since the angles between consecutive edges around the vertex may not necessarily be the
same, there is a need for additional care in organizing sinusoidal curves. The main advantage of this type of
grids, the elements can also be mass-produced since they can consist of a very limited set of Edge Elements.

• Trusses based on Semi-regular and Irregular Tessellations: The method can directly be extended for
trusses based on general tessellations of the plane. Here, we note that the regularity or uniformity (or the lack
thereof) of the tessellation would dictate whether we can mass produce a finite set of repeating Edge Elements
or if we each Edge Element is completely different from all others (as would happen for a completely arbitrary
tessellation of the plane).

• Regular Polyhedral Trusses: We observe that the repetitive characteristic of our Edge Elements for regular
shapes can be effectively utilized for regular polyhedra, i.e. platonic solids. Since all vertices in Platonic are
isomorphic to each other, the Edge Elements can be mass-produced. The sharp angle that exists between edges
can be handled by changing the cross-section of the toroidal domain. If a right tangential trapezoid is used
instead of the square as the cross-section, the slanted leg of the trapezoid can accommodate the sharp angle
created by the edges of the 3D grid. An interesting extension is to build other regular meshes using a similar
approach [2, 1, 20]. The Connectors and the corresponding Edge Elements for these will also be one type.
Therefore, they can also be mass-produced.

• Trusses based on Arbitrary Polygonal Meshes: For meshes that represented arbitrarily shaped surfaces, the
design of the Edge Element would naturally be dictated by the curvature characteristics of the surface. Here,
we envision that the curvature of such shapes can be achieved by altering the cross-section of the toroidal
domain based on the incoming edge. This leads to the creation of a torus with a unique cross-section at every
point along its toroidal direction. The sinusoidal curves also need to be organized to fit all the incoming edges
at a vertex. However, there is a need for solving both theoretical and practical problems starting from reducing
the number of the different elements for economical manufacturing.

• Mechanical Characterization: We believe that our Edge Elements, while primarily envisaged for artistic
applications, could make a potentially powerful candidate for engineering applications. Indeed, our inspiration
to create trusses came directly from structural mechanics. Having said that, a series of deeper numerical, as
well as physical experiments are necessary to understand the fundamental behavior of our Connectors and
Edge Elements. This could even prove useful in the very design of our proposed structures by allowing us to
strategically distribute the key-in-hole locations on the Connectors in an effective way.
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