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ABSTRACT
We present a novel methodology to generate mechanical

structures based on the idea of fractal geometry as described by
the chaos game. Chaos game is an iterative method that gener-
ates self-similar point-sets in the limiting case within a polygonal
domain. By computing Voronoi tessellations on these point-sets,
our method generates mechanical structures that adopts the self-
similarity of the point-sets resulting in fractal distribution of local
stiffness. The motivation behind our approach comes from the
observation that a typical generative structural design workflow
requires the ability to generate families of structures that possess
shared behavioral (e.g. thermal, mechanical, etc.) character-
istics making each structure distinct but feasible. However, the
generation of the alternatives, almost always, requires solving
an inverse structural problem which is both conceptually and
computationally challenging. The objective of our work is to de-
velop and investigate a forward-design methodology for generat-
ing families of structures that, while not identical, exhibit similar
mechanical behavior in a statistical sense. To this end, the central
hypothesis of our work is that structures generated using the chaos
game can generate families of self-similar structures that, while
not identical, exhibit similar mechanical behavior in a statistical
sense. Furthermore, each family is uniquely identifiable from the
parameters of the chaos game, namely, the polygonal domain,
fractional distance, and number of samples. We present a system-
atic study of these self-similar structures through modal analysis
and demonstrate a preliminary confirmation of our hypothesis.
Keywords: Fractals, Voronoi Tessellation, Generative De-
sign, Chaos Game

1. INTRODUCTION
Generative design of engineered structures is now a popu-

lar area of research spanning domains including structural me-
chanics, acoustics, and thermo-fluidics. In a typical generative
structural design workflow, the designer defines a spatial domain
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along with some mechanical conditions and constraints and the
modeling system generates a population of feasible structural al-
ternatives to choose from. A fundamental requirement for a such
a workflow is the ability to generate families of structures that
possess shared behavioral (e.g. thermal, mechanical, etc.) char-
acteristics making each structure “distinct but feasible”. How-
ever, the generation of the alternatives, almost always, requires
solving an inverse structural problem which is both conceptually
and computationally challenging [1–3].

The objective of this work is to develop and investigate a
forward-design methodology for generating families of structures
that, while not identical, exhibit similar mechanical behavior in a
statistical sense. More importantly, we seek a methodology that
offers explicit parameters to control the mechanical behavior of a
structural system. To achieve these goals, we introduce an algo-
rithm to generate a new class of structures, namely self-similar
structures, inspired by fractal geometry. Our methodology is
based on the well-known fractal algorithm known as the chaos
game, which is a simple and powerful method to generate fractal
geometry. Using point-sets generated using the chaos game, our
methodology utilizes the well-known Voronoi tessellation to gen-
erate self-similar structures with statistically shared mechanical
behavior (Figure 1).

1.1 Rationale & Background
Fractals offer a unique property that helps generate similar

structures since fractals can be defined as consisting of smaller
parts similar to itself, commonly called recursive self-similarity
[4]. Self-similarity is an important property of natural structures
(e.g. trees, nacre structures, etc.) and is particularly useful in
structural design problems [5, 6]. However, much of the lit-
erature primarily uses L-systems and grammar-based algorithms
[5, 7]. The common approach of investigation in these approaches
is to determine the right parameters for the algorithm to generate
the optimal structure for a given application rather than explore
methods to generate an entire design space of potentially feasible
designs. As a result, very little is explored or understood regard-
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(a) Point Generation (b) Voronoi of 
Generated Points

(c) Area Based 
Line Thickening

(d) Adding Grips (e) Modal Analysis Results

FIGURE 1: THE METHOD USED TO GENERATE THE POINTS (A), VORONOI DECOMPOSITION (B), AND THE RESULTING STRUCTURE(C).
IN ORDER TO TEST THE STRUCTURE WE ADD GRIP SECTIONS ON THE EXTERIOR OF THE STRUCTURE WITH SMALL GAPS BETWEEN
ADJACENT GRIPS (D). TO EVALUATE THE STRUCTURES WE UTILIZED MODAL ANALYSIS (E). THE PARAMETERS USED FOR GENERATION
ARE n = 3, λ = 0.5, AND t = 750.

ing stochastic similarity in mechanical or other physical proper-
ties of structures generated using existing fractal-based structural
design.

In contrast to prior works, our objective is to embody the
idea of generating populations of feasible alternatives rather than
generating one optimal solution to a structural problem. In order
to achieve this objective, we identify the chaos game as a potent
direction for algorithmic investigation of self-similar structure
generation. Chaos game is a well-known iterative process that
can be used to create fractal geometry in the form of point-sets
through repetitive and randomized generation of points using
a polygonal domain [8, 9]. Chaos game has been used in the
biomedical field [10, 11], plant modeling [12], and computer
graphics [4].

In order to understand why chaos game is an interesting di-
rection, let us consider a simple example — the Sierpinski gasket.
A typical way to generate the Sierpinski gasket is through iterative
subdivision using L-systems and turtle graphics [13]. However,
the Sierpinski triangle can also be generated by using the chaos
game by starting with a triangle and generating a series of points
based on randomized linear interpolation with the vertices of the
triangle (Figure 2). What is critical to note here is that while the
L-systems approach gives the exact geometry of the gasket for
each iteration, the chaos game only does so in the limiting case
(i.e. when the number of iterations tend to infinity). This has two
implications. First, the number of iterations in the chaos game
controls the level of subdivisions for the gasket. Second, even for
the same number of finite iterations, one gets a completely dif-
ferent point-set because of randomization. In conjunction, both
these implications mean that for a given polygon (a triangle in
this case), an entire family of geometrically similar point distribu-
tions (and therefore structures) can be generated by using merely
a few parameters (the number of iterations and the interpolation
parameter). The question is whether this geometric similarity
carries forward into mechanical behavior.

1.2 Technical Approach
Chaos game is an iterative method that generates self-similar

point-sets in the limiting case within a polygonal domain. By
computing Voronoi tessellations on these point-sets, our method

generates mechanical structures that adopt the self-similarity of
the point-sets resulting in the fractal distribution of local stiffness.

Our work aims to generate families of non-identical struc-
tures with similar mechanical behavior, which are generated in
the same manner. In this way, our process is a generative method
to create structures. Furthermore, each family is uniquely identi-
fiable from the parameters of the chaos game, namely, the polyg-
onal domain, point interpolation distance, and the number of
samples. We present a systematic study of these self-similar
structures through modal analysis and demonstrate a preliminary
confirmation of our hypothesis.

2. RELATED WORK
Our work spans multiple overlapping fields of research in

structural design each of which is quite extensive. Here, we
discuss works that are either methodologically or contextually
relevant to our work.

2.1 Unit-cell Structural Design
Structural design has a rich history with several algorithms

that seek to develop structural systems with specific physical
properties. For example, work by Chu et al. [14] considers the
design of cellular structures especially for additive manufactur-
ing. Similarly, we see several works that focus on lattice structures
for creating auxetic (negative Poisson’s ratio) structures [15–17].
What is common in these approaches is that they are based on
arrangements of some or the other form of a unit cell (often sym-
metric) and the arrangements are constrained according to some
underlying grid-structure. The idea is that one can tune macro-
and meso-scale properties by varying a few parameters pertain-
ing to the unit cell geometry [18]. However, the design of the
unit-cell, in itself, is not a trivial task. In fact, it is either ad hoc
and based on trial-and-error or requires significant expertise and
intuition.

2.2 Topology Optimization
Another widely practiced research direction in this regard is

that of topology optimization, wherein the typical goal is to opti-
mize (maximize or minimize) a specific criterion specified by the
designer [19, 20]. In these cases, the designer explicitly defines
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FIGURE 2: CREATION OF POINTS USING CHAOS GAME ALGO-
RITHM WHERE n = 3 AND λ = 0.5

the mechanical loads, constraints, and boundary conditions, and a
computer generates a single structure that meets the criteria with
the set conditions. In these cases, only a single optimal design
is generated, and if the designer needs a different structure, the
design problem must be redefined. There are also works is based
on using topology optimization combined with generative design
based on L-Systems for the creation of graph-based structures
[21, 22].

2.3 Learning-based Structural Design
Many recent works consider the inverse design approach

using machine learning methods to generate 2D structures with
tunable properties [23]. Recently, we see topology optimization
approaches in conjunction with deep learning methods such as
convolutional neural networks (CNN) [24] to generate multi-scale
structures spanning micro- and macro-scales. Genetic algorithms
have also been used to create optimal designs using a Pareto
frontier and multiple objectives [25]. There has also been uses
of machine learning algorithms in order to optimize biologically
inspired patterns [26].

2.4 Voronoi-based Cellular Structures
One method to create a large number of patterns revolves

around using Voronoi decomposition of points in order to ob-
tain cellular structures. One area that has used this is the design
of 2D infill structures for 3D printing[27]. In a similar man-
ner 3D Voronoi decomposition can be used to create 3D printed
structures with anisotropic behavior which can be helpful in cer-
tain application with uneven or varied loading conditions present
[28]. Another way that Voronoi decomposition has been used is
to generate foam structures which has application in many differ-
ent areas such as topological interlocking and energy absorption
[29]. One interesting application of this is in 2.5D tile genera-
tion wherein different 2D Voronoi layers are stacked on top of
one another in order to create a 3D structure from 2D Voronoi
decomposition [30]. Voronoi decomposition has also been used
to create metamaterial structures which be very beneficial since
they do not rely on the design of a single unit cell but rather the
design of the Voronoi sites [31, 32].

2.5 Fractal-based Structural Design
The chaos game has been used to explore the mechanical

properties of fractals when applied as lattice structures [33–35].
This is done by geometrically defining a structure through lengths,
widths, and thicknesses, which can be modified to change me-
chanical behavior. Similar works have done experiments on hi-
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FIGURE 3: STRUCTURES GENERATED USING DIFFERENT COM-
BINATIONS OF PARAMETER SETS ARE SHOWN HERE. THE EF-
FECTS OF VARYING NUMBER OF VERTICES (n), NUMBER OF
POINTS (t ), AND FRACTIONAL DISTANCE MOVED ALONG THE
LINE (λ) ON THE GENERATED POINTS AND STRUCTURES ARE
DISPLAYED.

erarchical structures, which can be defined by self similarly at
multiple dimensions [36–38].

2.6 Our Work
Our work leverages the strength of fractal-based approaches

(especially the chaos game) for inducing controllable stochas-
tic variability along with Voronoi-based approaches for elegant
topology generation for structure generation. This powerful com-
bination provides advantages over prior approaches by introduc-
ing an intuitive way for both parametric control as well as structure
generation. In effect, this provides us a means for direct creation
of entire families of structures that behave in some stochastically
similar manner without the need for inverse design.

3. CONCEPTUAL PRELIMINARIES
Chaos theory has been used to define a method for creating

fractals, commonly called the chaos game [39–41]. The chaos
game is an algorithm used to generate a fractal that is described
as an Iterative Function System, which is a set of pairs of linear
mappings [39, 40]. Many different fractals can be generated using
different parameters. One of the most common fractal patterns
that can be created using this process is the Sierpiński triangle
[41, 42]. In fact, the same process that is used to create the
Sierpiński gasket and the Menger sponge, can be used to create
fractals for other polygons.
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3.1 Chaos Game
The process that the chaos game uses to generate fractals is

defined as follows (Figure 2). Consider a polygon, 𝑃𝑛, where 𝑛

is the number of vertices of the polygon. The polygon’s vertices
are defined by the set of points {𝑝1, 𝑝2, ..., 𝑝𝑛}. For each vertex,
the value of 𝑝𝑖 = (𝑐𝑜𝑠𝜃𝑖 , 𝑠𝑖𝑛𝜃𝑖), where 𝜃𝑖 =

2𝜋∗𝑖
𝑛

. This creates a
regular polygon with 𝑛 number of vertices. Consider a randomly
placed point 𝑞0 ∈ R2. We define a function 𝑅(𝑛) : [1, 𝑛] => 𝑖

which provides the random integer, 𝑖, from 1 to n. Using this
function, the 𝑖-th vertex of 𝑃𝑛, which is 𝑝𝑖 , is chosen. Using
this randomly selected vertex, 𝑝𝑖 , and the randomly chosen point,
𝑞0, a new point can be defined using the following equation
𝑞1 := 𝑞0 + 𝜆(𝑝𝑖 − 𝑞0), where 𝜆 is the fractional distance moved
along the line connecting the vertex, 𝑝𝑖 , and the initial point, 𝑞0,
and defined as 𝜆 ∈ [0, 1]. This process can now be repeated for
the new point, 𝑞1. Using t to represent the current iteration, the
following equation for finding the next point can be defined.

𝑞𝑡+1 ← 𝑞𝑡 + 𝜆(𝑝𝑅 (𝑛) − 𝑞𝑡 ) (1)

3.2 Parameters
This gives use three parameters for the chaos game: 𝑛, 𝜆, and

𝑡. The first parameter 𝑛 is the number of vertices of the polygon,
and these vertices are often called attractors in previous literature
[39]. Different regular polygons will be generated depending on
the number of vertices, changing the options available for 𝑝𝑖 and
the possible values of 𝑞𝑡 (Figure 3). The second parameter is 𝜆,
or the fractional distance moved along the line connecting 𝑝𝑖 and
𝑞𝑡 . The fractional distance moved along the line, 𝜆 is confined
to be between 0 and 1. When 𝜆 = 0, 𝑞𝑡+1 = 𝑞𝑡 , conversely when
𝜆 = 1, 𝑞𝑡+1 = 𝑝𝑖 . This means that if 𝜆 is closer to 1, the points will
be more clustered towards the vertices of the polygon, while if 𝜆
to 0, the points will be more clustered in the center of the polygon
(Figure 3). The third parameter is 𝑡 or the number of iterations
being run. The current iteration, 𝑡, is defined as 𝑡 ∈ [𝑡0, 𝑇], where
𝑡0 > 0 and 𝑇 is the number of iterations. 𝑡0 must be greater than
0 because the initial point 𝑞0 is not guaranteed to be within the
bounds of 𝑃𝑛. Changing the number of points generated changes
how densely the polygon is filled, which changes the structure
being generated and how that structure may react when tested
(Figure 3).

3.3 Generating Points
By defining all three parameters, a set of points can be gen-

erated using the defined algorithm (Figure 2). The set of points
is defined as 𝑆 := {𝑞𝑡 }, where all 𝑞𝑡 are inside the main polygon.
The set of points will be called the chaos sites. These chaos sites
can be used to create the structures being studied (Figure 1a).

Since the number of points being generated is finite, it is
possible to get different sets of points with the same parameters
since the starting random point differs each time. Additionally,
successive iterations of 𝑅(𝑛) return different chosen points each
time even if the initial point is the same. It is for this reason that
this process is generative since, for the same set of parameters,
there will be a different (but similar) set of points generated
(Figure 4). Different sets of parameters will also result in very
different sets of points (Figure 3). For example, five runs with the

Run 1 Run 2 Run 3 Run 4 Run 5

3 Vertices
750 Points 

0.5 Distance

8 Vertices
1000 Points

0.75 
Distance

FIGURE 4: FIVE DIFFERENT RUNS FOR THE SAME SET OF PA-
RAMETERS PRODUCE SIMILAR, BUT NOT THE SAME, RESULTS
FOR THE GENERATED POINTS AND VORONOI DECOMPOSITION
SHOWING THAT THE PROCESS IS GENERATIVE. TWO DIFFERENT
SETS OF PARAMETERS ARE SHOWN HERE.

polygon being a triangle, fractional distance moved along the line
being 0.5, and the number of points being 750 will produce five
triangles that have a similar clustering of points, but the structure
will not be the same across all five runs (Figure 4).

4. STRUCTURE GENERATION METHODOLOGY
The chaos sites, 𝑆, generated using the Chaos Game algo-

rithm can be used to create a structure. The methodology used
to generate this structure has two main components: (1) comput-
ing a Voronoi tessellation of 𝑆, (2) thickening the edges of the
Voronoi tessellation.

4.1 Voronoi Decomposition
Using the points contained in 𝑆 as Voronoi sites, a Voronoi

tessellation is computed resulting in a partitioning of a given
polygonal domains. To create our structures, a Voronoi tessel-
lation is calculated for the chaos sites, 𝑆, creating a set of cells
for the structure. Note that the distribution of points in 𝑆 is an
approximation of some fractal geometry. As a result, the tes-
sellation of this set results in a partition wherein the cell areas
are distributed in a manner inversely proportional to the point
density thereby giving the structural a fractal-like property. The
unbounded cells resulting from Voronoi tessellation are trimmed
according to the polygonal domain boundary (Figure 1b).

4.2 Edge Thickening
Given a Voronoi tessellation of the polygonal domain, our

next step is to thicken the edges in the tessellation. As such,
this can simply be achieved by creating offset polygons for each
Voronoi cell in the tessellation. However, an important consid-
eration here is that the fractal-like distribution of the chaos sites
results in a high variation in the areas of the Voronoi cells. There-
fore, we employ an adaptive strategy wherein, we determine the
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offset for each cell based on the measure of the cell areas normal-
ized with respect to largest and smallest cells in the tessellation
(Figure 1c). Specifically, we begin by computing the maximum
and minimum cells areas (𝐴𝑚𝑎𝑥 and 𝐴𝑚𝑖𝑛 respectively. For a
given Voronoi cell with an area 𝐴, we then compute the normal-
ized area, 𝐴̂, as follows (Equation 2):

𝐴̂ =
𝐴 − 𝐴𝑚𝑖𝑛

𝐴𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛

(2)

Consider an edge 𝑒 shared by two Voronoi cells 𝑓𝑗 and 𝑓𝑗 .
Then, the thickness of the edge is given by 𝜏𝑒 = 𝜔1 + 𝜔2, where
𝜔𝑖 and 𝜔𝑗 is the offset applied to 𝑓𝑖 and 𝑓𝑗 . Note that for a
non-adaptive thickening, this would simply amount to 𝜏𝑒 = 2𝜔
where 𝜔1 = 𝜔2 = 𝜔 is a constant offset. However, in our adaptive
case, the idea is to compute the offset based on the normalized
areas. For this, we define 𝜔𝑚𝑎𝑥 and 𝜔𝑚𝑖𝑛 as the maximum and
minimum possible polygon offsets respectively. For a cell 𝑓𝑖
with normalized area 𝐴̂𝑖 , the offset 𝜔𝑖 is calculated by linearly
interpolating between the offset limits as (Equation 3):

𝜔𝑖 = 𝐴̂𝑖 (𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛) + 𝜔𝑚𝑖𝑛 (3)

Therefore, the thickness of an edge shared by two Voronoi
cells 𝑓𝑗 and 𝑓𝑗 with normalized areas 𝐴̂𝑖 and 𝐴̂𝑗 , the thickness
𝜏𝑒 = ( 𝐴̂𝑖 + 𝐴̂𝑗 ) (𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛) + 2𝜔𝑚𝑖𝑛.

4.3 Grip Generation for Modal Analysis
In our work, we specifically aim to investigate our shape

generation methodology in terms of comparing structures based
on their natural frequencies. In order to do so, we implemented
a grip generation step in our computational framework. This is
primarily done to ensure the application of appropriate bound-
ary conditions for our analysis. Having said this, this is not a
fundamentally necessary step toward the generation of the actual
self-similar structure and we have added it for completeness.

To create the grips, we first generate an outward offset for the
polygonal domain. This results in a region between the original
and the offset polygon. We then split this region into 𝑛 pieces
(where 𝑛 is the number of sides of the domain) simply by con-
necting each pair of corresponding vertices in the two polygons.
This results in 𝑛 distinct grips rather than a single body (Figure
1d). After the grips have been added, the sample is extruded and
triangulated to make it a 3D structure.

5. EXPERIMENTAL DESIGN
The central claim behind our method is that the geometric

similarities induced by each family of parameters of the chaos
game reflects in the corresponding mechanical behavior. In or-
der to investigate this claim, we conducted a series of numerical
experiments wherein we used modal analysis as our choice of
physical characterization. The idea was to perform compara-
tive statistical analyses of natural frequencies of structures across
different selective parameter families (polygonal domain — 𝑛,
number of iterations — 𝑇 , fractional distance — 𝜆). Below, we
provided details regarding the design of our experiments.

Points

Generated 
Structure

Frequency
1

Frequency
2

Frequency
3

Frequency
4

Parameter Set 1 Parameter Set 2 Parameter Set 3

Scale

FIGURE 5: DIFFERENT PARAMETERS FOR SHAPE GENERATION
ARE SHOWN HERE. THE DEFORMATION OF THE FIRST 4 MODES
IS ALSO SHOWN WITH THE SCALE BAR SHOWING THE TOTAL
DEFORMATION IN METERS. AN IMPORTANT NOTE IS THAT THE
GRIPS SHOWN IN THE GENERATED STRUCTURE ARE DISCON-
NECTED BY A VERY SMALL MARGIN.

5.1 Modal Analysis
We chose modal analysis as our context for two reasons,

First, it gives is a concrete physical context (vibrations of a dy-
namical system) which we can easily quantify in terms of natural
frequencies. Second, the modes of a structural system are funda-
mentally connected to the geometry and topology of the system.
Consequently, this would allow us to make objective comparisons
of the mechanical behavior of each structure by examining the
natural frequencies and mode shapes of each geometry [43, 44].
Based on these reasons, modal analysis is an ideal candidate for
a preliminary exploration of how statistical shape similarities can
carry over to mechanical properties.

We implemented our experiments using ANSYS. Each grip’s
nodes are fixed which prevents the grips from moving allowing
only the inside structure to be examined with the modal analysis.
Once the grips are fixed, the modal analysis is performed, and the
results can be analyzed.

5.2 Hypothesis
We predict that using the same parameters, the generated

structures will not have statistically different mechanical proper-
ties over multiple iterations. This hypothesis aims to test if the

5 Copyright © 2023 by ASME



parameter space defined by the chaos game and using our gener-
ation methodology results in structures that belong to the same
family which could all be feasible design solutions. Ultimately
this would show that our methodology is a generative process for
creating structures.

If the previous statement holds true, we expect that as we
change 𝜆 then there should be a linear relationship in the fre-
quency magnitude. This relationship can be expected because 𝜆

is the distance moved along a line connected the randomly se-
lected polygon point and the previous point. For this reason we
expect a linear relationship between 𝜆 and the magnitude of the
frequency.

5.3 Experiment 1
To test the hypothesis that structures generated with the same

set of parameters will have statistically similar results, the same
set of parameters was simulated 100 iterations. The parameters
𝑛, 𝜆, and 𝑡 were set to 3 vertices, 0.5 fractional distance moved
along the line, and 750 points, respectively. The first ten natural
frequencies were found for each of the 100 runs in order for
comparison. For each shape generated, we recorded 10 natural
frequencies along with the deformation of the shape.

5.4 Experiment 2
The goal of the second hypothesis is to determine the rela-

tionship between 𝜆 and the resulting frequencies. In order to test
this, a second experimental setup was devised where with a set
value of 𝑛, the value of 𝜆 would vary. The number of points was
set be set to 750 points. Additionally for 𝜆 the values were the
following: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. For each
shape generated, we recorded 5 natural frequencies along with
the deformation of the shape. A total of 25 total iterations were
run at each value of 𝜆. Additionally the values of 𝑛 were chosen
to be 3, 5, 6, and 8. This resulted in a 255 total tests for each
value of 𝑛.

6. RESULTS
6.1 Experiment 1

A one-way ANOVA shows that the null hypothesis is rejected.
In other words, there is there is a significant difference in the
population means of the data. This, in turn, supports our central
hypothesis that structures generated using the same parameters
have similar mechanical properties. This is further reinforced by
the facts that standard deviations for each given population is low
(Table 1). It is worth noting, however, that the standard deviations
generally increase as the frequency increases. This is indicated
by the observation that the standard deviation for frequency 1 is
2.04𝐻𝑧, whereas for frequency 10 it increases to 13.06𝐻𝑧.

As modal frequency increases, the magnitude of the frequen-
cies begin to pair off with one another, with frequency 1 being
the exception as it is the only category dissimilar to the other
frequencies (Figure 6). We can observe this pairing off effect in
frequencies 2 and 3 which have similar results at around a fre-
quency of 440𝐻𝑧, and frequencies 4, 5, and 6 which also share
similar results at around a frequency of 700𝐻𝑧. Frequencies 7,
8, 9, and 10 also pair together at a value around 1000𝐻𝑧. An
interesting observation is that at higher frequency numbers the

1 2 3 4 5 6 7 8 9 10

Frequency Number

Fr
eq

u
en

cy
 [

H
z]

200

300

400

500

600

700

800

900

1000

1100

FIGURE 6: FIRST 10 FREQUENCIES FOR THE SAME SET OF PA-
RAMETERS (n = 3, λ = 0.5, AND t = 750) AFTER 100 RUNS.

number of frequencies in a pair increases. This is observed first
with the first pairing only containing two frequencies, the next
having three frequencies and the next having four frequencies.
Since many of these frequencies pair together, we used a two-
sample t-test in order to verify that these frequencies are from
two independent populations, rather than samples from a sin-
gle population. In each case, the p-value for comparison was
< 0.005 showing that it is likely that the pairing originates from
two separate populations. Similarly to the pairing behavior of
the frequencies, it can be observed that the standard deviations
of the different frequency groups pair together. This can be fur-
ther demonstrated as the standard deviation difference between
frequencies 2 and 3 is 0.39𝐻𝑧 and are near 3.4𝐻𝑧, whereas, the
standard deviations for frequencies 4, 5, and 6 are all near 7𝐻𝑧.

6.2 Experiment 2
For experiment 2, we tested if the fractional distance moved

along the line, 𝜆, has a linear relationship with the frequency.
For each of the different polygons tested we conducted a two-way
ANOVA which showed that the null hypothesis was rejected in
each case, meaning that there are significant differences in mean
values for each of the two variables, 𝜆 and frequency number.
Additionally, the tests also showed that there is an interaction
between the two factors. Some general results were found for all
the polygons tested. There appears to be a distance at which each
frequency value peaks for each polygon (Figure 7). For example,
for the triangle (𝑛 = 3), the frequency values peak at 𝜆 = 0.4.
Also, the lowest frequency value for the structures tested tends to
occur at 𝜆 = 0.9 (Figure 7). Further, frequencies 1-3 change less
as 𝜆 increases from one value to the next, while frequencies 4-5
change more as 𝜆 increases.

6.2.1 Triangle. For the triangle structures (𝑛 = 3), the fre-
quency magnitudes tend to form pairs at many values of 𝜆 (Figure

6 Copyright © 2023 by ASME



Frequency Number 1 2 3 4 5 6 7 8 9 10
Mean (𝐻𝑧) 209.5 438.0 443.9 687.3 703.3 713.2 994.5 1006.7 1022.7 1043.7

Standard Deviation (𝐻𝑧) 2.04 3.61 3.22 7.63 7.05 6.68 8.69 7.30 8.43 13.06

TABLE 1: AFTER 100 RUNS WITH THE SAME INPUT PARAMETERS THE AVERAGE AND STANDARD DEVIATION ARE SHOWN.

7). This can be seen as frequency 1 is often dissimilar to the other
values and frequencies 2 and 3 are often close in magnitude. In
a similar manner, frequencies 4 and 5 tend to pair together. For
the triangle structures, the pairings stay consistent up to 𝜆 = 0.6;
afterwards, the pairings are no longer similar to 𝜆 < 0.6. Fur-
ther, for 𝜆 = 0.9, the magnitudes of all five frequencies are close;
however, through t-test comparison, it was determined that each
frequency likely belongs to its own population. For 𝜆 = 0.1,
the standard deviation of the frequency values is higher than the
standard deviations of the same frequencies for the other 𝜆 values.
More specifically, the standard deviations of frequencies 4 and 5
are high compared to the standard deviations of frequencies 4 and
5 for the other 𝜆 values. The magnitude of the frequency values
peak near 𝜆 = 0.4, afterwards there is a steady decrease in the val-
ues. The magnitudes of the first five frequencies are also higher
than the magnitudes of the other polygons with a maximum near
850𝐻𝑧.

6.2.2 Pentagon. For the pentagon structures (𝑛 = 5), the
frequency magnitudes form similar pairs to the triangle structures,
except the pairings stay consistent up to 𝜆 = 0.8 (Figure 7).
Further, for 𝜆 = 0.9 the magnitudes of all the frequencies except
frequency 1 are close in magnitude which is similar to what was
observed with the triangle at 𝜆 = 0.7. The magnitude of the
frequency values peak near 𝜆 = 0.5. As a whole, the standard
deviations for the frequency values are small for the pentagon
structures. The magnitudes of all the frequency values are smaller
than their counterparts (same 𝜆 and frequency number) for the
triangle structures, appearing to be around half the magnitude in
most cases. The maximum frequency value is around 400𝐻𝑧.

6.2.3 Hexagon. The frequency magnitudes for the hexagon
structures (𝑛 = 6) follow the same pairing as the pentagon, but
stay consistent longer, including 𝜆 = 0.9 (Figure 7) which is the
highest value of 𝜆 that maintains the pairing. The magnitude
of the frequency values peaks around 𝜆 = 0.5, with a maxi-
mum frequency value of around 350𝐻𝑧. Frequencies 4 and 5 at
𝜆 = 0.1 and 𝜆 = 0.9 have a higher standard deviation than the
other frequency standard deviations. For 0.2 through 0.8 frac-
tional distance moved along the line (𝜆 = 0.2− 0.8), the standard
deviations of the magnitudes of the frequencies are smaller in
comparison with the previous values. The hexagon structures
also tend to have lower frequency magnitudes than their coun-
terparts for the pentagon and triangle; however, there is not as
steep of a decrease from pentagon to hexagon as there was from
triangle to pentagon.

6.2.4 Octagon. The same pairing seen before in the other
structures occurs for the octagon structure (𝑛 = 8) (Figure 7). The
pairings stay consistent up to and including 0.9 fractional distance
moved along the line (𝜆 = 0.9), just like the hexagon structures.
Frequencies 4 and 5 also do not drop in magnitude as much from
𝜆 = 0.7 to 𝜆 = 0.9 as they did for the hexagon structures. The

magnitude of the frequency values peak near 𝜆 = 0.5, similar to
the pentagon and hexagon. The octagon structures also tend to
have lower frequency magnitudes than their counterparts for the
hexagon. For 0.7 through 0.9 fractional distance moved along the
line (𝜆 = 0.7 − 0.9), the magnitudes of frequency 1 are close to
each other. This same pattern occurs for frequencies 2 and 3.

Some interesting general results can also be noted. There
seems to be a point where the distance along the line starts af-
fecting the frequency values less (Figure 7). For the pentagon,
hexagon, and octagon structures where 𝜆 = 0.7 − 0.9, the mag-
nitudes for frequency 1 are similar. For the hexagon and octagon
structures where 𝜆 = 0.7 − 0.9, the magnitudes for frequencies
2-3 are similar. Also, as the number of vertices, 𝑛, increases, the
pairings stay consistent for higher values of 𝜆 (Figure 7). For
the triangle, the pairings are only consistent up to 𝜆 = 0.5, while
for the octagon, the pairings are consistent up to 𝜆 = 0.9. Fur-
ther, as the number of vertices, 𝑛, increases, the magnitude of
the frequency values decreases except for when pairing happens
(Figure 7). For example, frequency 1 for 𝜆 = 0.1 for the triangle
is higher than frequency 1 for 𝜆 = 0.1 for the pentagon, which is
higher than frequency 1 for 𝜆 = 0.1 for the octagon. However for
𝜆 = 0.9, since the triangle (𝑛 = 3) does not have pairing at this
𝜆, the magnitudes of frequencies 2 and 3 actually increase for the
pentagon (𝑛 = 5) because pairing occurs.

The results can also be visualized by analyzing the mode
shapes and displacement of the structure at the frequencies found
(Figure 5). Several interesting results were found. For frequency
1 with all the polygons, the largest displacement occurred in the
center of the structure. For frequencies 2 and 3 for all the poly-
gons, there is a hill (positive displacement in 𝑧) on one side,
while there is a valley (negative displacement in 𝑧) on the other
side. Frequencies 2 and 3 have similar-looking structural dis-
placements, but the hills and valleys are located in different sec-
tions. The displacement of the triangle structure for frequency 4
does not look like the displacement of the pentagon and octagon
structures for frequency 4. The triangle structure has three hills
located near the vertices and one valley located in the center of
the structure. The pentagon and hexagon structures have two hills
and two valleys and appear similar to each other.

7. DISCUSSION
7.1 Connecting Mechanics to Geometry

Overall, we observe a strong connection between mechani-
cal properties and the chaos game parameters. For example, an
increase in the number of vertices of the polygon generally re-
sults in a decrease in the magnitude of the frequencies. We also
observe a non-linear relationship between 𝜆 and frequency which
was not expected since 𝜆 only changes the distance along a line.
This was most notable in the triangle and pentagon case where
𝜆 = 0.9 results in a similar behavior for all frequency values.
These overarching observations strongly indicate a fundamental

7 Copyright © 2023 by ASME



Triangle Pentagon

Hexagon Octagon

Frequency 1 Frequency 2 Frequency 3 Frequency 4 Frequency 5

Fractional Distance Moved Along the Line

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fr
eq

u
en

cy
 [

H
z]

0

50

100

150

200

250

300

350

Fractional Distance Moved Along the Line

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fr
eq

u
en

cy
 [

H
z]

0

50

100

150

200

250

300

350

400

Fractional Distance Moved Along the Line

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fr

eq
u

en
cy

 [
H

z]
0

50

100

150

200

250

300

350

400

450

Fractional Distance Moved Along the Line

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fr
eq

u
en

cy
 [

H
z]

0

100

200

300

400

500

600

700

800

900

FIGURE 7: THE FIRST FIVE FREQUENCIES FOUND FOR THE STRUCTURES GENERATED WITH THE FRACTIONAL DISTANCE MOVED, λ
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connection between the geometric parameters and mechanical
response, at least for natural frequencies. Having said this, sim-
ilar experiments are needed for other mechanical responses (e.g.
deformation under quasi-static compression and tension) to as-
certain these relationships.

7.2 Behavioral Patterns
One behavioral pattern we observe is that a value of 𝜆 at

which the frequencies appear to reach a maximum value. This
is related to how sensitive a given polygon (𝑛) is to the 𝜆 value.
For example, while 𝜆 = 0.5, 𝑛 = 3 results in a Sierpiński triangle,
𝜆 = 0.5, 𝑛 = 8 (i.e. octagon) has no discernible fractal (Figure
3). Furthermore, for the triangle there is a decrease in modal
frequencies only near 𝜆 = 0.5 (i.e. the Sierpiński triangle case).
For an octagon and triangle at 𝜆 = 0.75 there is a clear fractal
structure appearing which may relate to the decrease in the modal
frequencies observed in octagon before 𝜆 = 0.75. In another
example, we find that for 𝑛 = 5 (i.e. a pentagon), the Sierpiński-
type fractal occurs only at 𝜆 = 2

3 . This could be a reason why
there is a decrease in the modal frequencies near 𝜆 = 2

3 for the
pentagon.

Another behavioral pattern that we observe occurred in
nearly all of the structures was that of pairing of the results.
This can first be observed in our first experiment wherein the
second and third natural frequencies have close median values
while the fourth, fifth, and sixth frequencies form another cluster
of close median values (Table 1). Similarly, we observe cluster-
ing of median values for several other cases as well (Figure 7).
The only structures where this pairing did not occur was for high
values of 𝜆 in the triangle and pentagon. In order to validate that
each member of a pairing originated from a separate population
a t-value comparison was conducted. In every case the 𝑝 < 0.05
meaning that there is reason to believe that members of a pairing
originate from different populations. The largest 𝑝-values that we
found in our selective t-tests was 𝑝 = 0.04 for (𝑛 = 6, 𝜆 = 0.5)
between fourth and fifth natural frequencies. Similarly, we get
𝑝 = .03 for (𝑛 = 3, 𝜆 = 0.9) and (𝑛 = 5, 𝜆 = 0.9) between fourth
and fifth frequencies. Even here, note that the 𝑝-value is safely
below the threshold of 𝑝 < .05. While we cannot posit regarding
the reason for these relatively close distributions, we do observe
visual similarity in terms of the deformation across the first few
modes. For example, the second and third natural frequencies
generally display high qualitative similarity for each polygonal
domain (Figure 5).

7.3 Limitations and Future work
There are several questions that require further exploration

in this work. First, there are several variations to the chaos game
with extended rules for point generation. One example is to apply
a preference model during the random selection of polygonal ver-
tices that leads to completely new types of structures to emerge.
Given that this is a rich design space, further expansive inves-
tigation is needed to further explore this aspect. Secondly, the
application of chaos game to non-regular polygons is certainly
worth exploring. The effect of polygonal asymmetry may shed
some critical insights regarding behavior similarities. Adding
to this, an obvious extension would be to consider arbitrary 2D

domains wherein we can apply our method to triangulated do-
mains. Finally, it is important to evaluate our current structures
for different multi-physical responses. Another intriguing future
direction is to extend the idea to 3D structures. Interestingly, this
can be easily done since the chaos game works even for selective
3D polyhedral domain. As a result, it would be interesting to
explore sponge-type as well as frame-type structures in 3D do-
mains based on using the edges and faces of 3D Voronoi cells.
Overall, we see an immense potential for self-similar structures
in generative design.

8. CONCLUSION
In this paper, we introduced a forward-design approach for

generative statistically self-similar structures based on fractal ge-
ometry. Using a combination of chaos game and Voronoi tessel-
lation, we show that it is possible to generate families of structures
whose geometric similarities carry forward in terms of mechan-
ical response. We demonstrated this within the concrete context
of natural modes of the structures generated using our method.
Our experiments conclusively show that the parameters of the
chaos game offer a controlled way to tune the mechanical re-
sponse and enable the generation of populations of shapes rather
than a single optimal shape. We further demonstrated tractable
relationship across different parameters (especially fractional dis-
tance) of the chaos game. This is an essential requirement for
generative design workflow. We believe that this work is merely a
starting point to a potentially rich research direction in the domain
of generative structural design.
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