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ABSTRACT
Assessment techniques for orthopedics training are primarily

subjective, and often based on qualitative metrics. In this paper,
we propose an analytical approach for the quantitative assessment
of orthopedic surgery training, specifically, bone drilling. Our
goal in this paper is to help improve orthopedics training by pro-
viding a means to assess the resident training progress. To this
end, we introduce a novel metric that assigns a unique signature to
an individual’s drilling activity based on their drilling trajectory,
and we compare it with the signatures of experienced surgeons.
We conduct a simple bone-drilling experiment with surgeons (ex-
perts) and non-expert users on a hybrid (physical - digital) setup
consisting of 3D printed bone surrogates that emulate physical
and perceptual properties of a human bone across the young and
old age groups. Our preliminary analysis of drilling signatures
across expert and non-expert users showcases a perceivable dis-
tinction between the two user groups. Our results indicate that
the drilling signature captures the user’s drilling behavior, thus,
characterizing drilling performance between novice and experts.

1 Introduction & Background
Precise motor control is one of the fundamental skills ac-

quired through years of practice, furnishing with the capability
to perform skilled tasks such as sculpting, carving, painting, pre-
cision manufacturing, as well as, medical surgeries. Orthopedic
residency programs are designed around a similar goal of facil-
itating resident surgeons with training and guidance to perform

complex surgeries. Orthopedic surgeries are tasks requiring the
ability to make fine and careful motor movements due to the inher-
ent risk of damaging the bone, or any critical nerve or tissue [1],
thereby endangering the patient. Therefore, proper training and
evaluation of orthopedic residents is a critical task.

From our interviews with expert surgeons, it is clear that
the evaluation of orthopedic resident training performance is not
merely qualitative but completely subjective. The expert surgeon
observes the residents visually and grades their performance based
on that observation. Our main goal in this paper is to help im-
prove orthopedic resident training by facilitating an objective, and
preferably quantitative, means to evaluate training performance
of orthopedic residents. For this, we designed a hardware setup to
capture real-time bone-drilling data and developed a drilling sig-
nature to assess the quality of the drilling tasks. We demonstrate
our evaluation approach by collecting data from an expert surgeon,
computing the signature model of the expert, and subsequently
evaluating the drilling performance of novice participants through
a controlled lab experiment.

1.1 Orthopaedic Surgery Training
Many different techniques have been proposed to improve

resident training to increase patient safety and reduce the time
required for residents to become proficient with the necessary
skills of bone drilling and screw placement. Recently, much
research has been reported to improve bone-machining skills
through surgical simulation in arthroscopy, orthopedic surgery,
and craniomaxillofacial surgery. The majority of these studies are
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focused on bone drilling [2]. Previous systems have employed
cadaveric training, animal bones, and virtual reality with some
levels of success.

Cadaveric training and animal model are the traditional or-
thopedic simulators used for surgical training. They serve as the
best alternative to live surgery [3] as they offer realism, tactile
feedback, and awareness about the anatomical construction [4].
However, human cadavers are expensive, and their limited avail-
ability restricts their widespread use. Further, cadavers require
regular maintenance in special facilities and are also susceptible
to disease transmission. To address the shortcomings of cadav-
eric training, VR-based orthopedic simulations have been widely
researched. They are employed for skill acquisition, decision-
making, pre-operative planning [5], and real surgery [6]. These
simulators eliminate the requirement of cadavers or animal bones
and reduce operative time to improve the performance of surgical
trainees [7]. However, VR simulators are expensive and do not
provide a realistic environment nor physical, tactile feedback.

By taking advantage of both physical and virtual-reality sim-
ulators, this study proposes a hybrid bone drilling simulator that
will employ 3D printed-customizable bone simulant along with
real-time visual information provided to the operator. The sys-
tem collects motion data during drilling into a bone surrogate.
Different bone conditions and geometries can be replicated with
3D printing and special polymer treatment. This versatility with
the visual feedback will allow the system to inform both the in-
structor and the trainee about the drilling performance through
the proposed evaluation technique.

1.2 Evaluating Bone-Drilling Performance
Past researches reveal that there exists a variable approach

while judging bone drilling performance. Although teaching
surgical technique is a significant residency task, traditional tech-
nical skills assessments are inconsistent and subjective [8]. As
discussed in the previous section, different types of surgical sim-
ulators offer different kinds of drilling environment. Hence the
performance assessment technique also varies. One common fac-
tor in assessment is the onset of osteonecrosis, a disease resulting
from thermal damage to the bone tissue. [9].

The temperature generated during the bone drilling depends
upon various parameters such as drill geometry, rotational speed,
drilling forces, and cooling. Most of the investigations are re-
lated to rotational speed and drilling forces. There is a general
agreement in the literature that the temperature increases with
the drill speed [10]. The drill feed rate is another parameter in
determining the heat generated during bone drilling. Generally,
at higher feed rates, the drilling time decreases, and less heat is
accumulated. However, high feed rates might also imply higher
forces and higher heat generation [11].

Another approach in gauging drilling performance is the
plunging distance. Plunging distance is the distance that a drill

bit might travel after drilling through the second cortical region.
Bone drilling requires precision in hand motion, and a greater
plunging distance may cause soft tissue damage. [12] built a low-
cost drilling simulator to train orthopedic residents in reducing the
drill plunging depth. This study found that the plunging depths
of the junior residents were significantly greater than orthopedic
specialists (7.00 mm vs. 5.28 mm). However, no significant
difference was observed between the senior residents and the
orthopedic experts (6.33 mm vs. 5.28 mm).

Different researchers have suggested various approaches to
judge drilling performance based on individual parameters. How-
ever, not much work has been reported in developing a single
parameter to compare the drilling performance of a novice to that
of a specialist. As seen, all the performance parameters are re-
lated to motion (feed rate, time in the bone, plunging). Therefore,
this study aims to develop a metric based on the motion data to
distinguish expert levels.

2 Bone Drilling Data Collection
2.1 Physical Setup Design

The motivation behind designing a hybrid simulator was to
develop a versatile device that provides the ability to utilize 3D
printed-customizable cortical bones and furnishes performance
feedback. As shown in Fig. (X), the physical set-up is focused on
the 3D-printed bone-mimicking composite. The bone simulant
is manufactured using a special 3D-printable plaster employing
the binder jetting technology. 3D printing can create complex
geometries, and thus, the testing sample is customizable and can
be patient or bone-specific. In addition, the mechanical properties
can be modified at the post-printing stage with an epoxy treat-
ment. This treatment can produce various grades of hardness and
toughness to simulate bones at different ages or conditions. In this
study, two hardness grades were used, which replicated young
(healthy) bone and osteoporotic bone. Based on the reviews from
expert surgeons, the young bone’s hardness was designed to be 95
while that of an osteoporotic bone was 45 on the Shore D scale.

In this study, the bone simulant was clamped to a 6-dof ATI
gamma force sensor (ATI Industrial Automation, USA), which
helped record the drilling force and torque in 3 axes. Further, a
1700 rpm Bosch hand drill (Bosch, USA) was connected to a Ge-
omagic Touch (3D Systems, USA) haptic device, which rendered
the position and orientation in 3 axes. Robust construction and
ease of use were incorporated as the design criteria.

2.2 Data Recording and Processing
Bone drilling and fracture fixation require precision and ac-

curacy in hand movement. As discussed in the previous section,
the motion data was recorded using a 6-dof haptic device. To
accurately judge a drilling performance, the position recorded
at the stylus end needed to be offset to the drill tip. This was
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FIGURE 1. (a) We designed a hybrid (physical-digital) setup for bone
drilling training using 3D-printed bone surrogates; (b) Bone drilling
task being performed on our setup using a surgical drill guide for better
stability

achieved using a forward kinematic model, the details of which
are discussed in the subsequent sections. Also, to compute the
corresponding force at a particular position, the haptic device
and F/T sensor data were synchronized during the postprocessing.
Data synchronization also aided in accurately finding the drilling
cycle’s start and endpoint to eliminate redundant data.

2.3 Evaluation Methodology
The literature review and preliminary analysis found that

more emphasis should be given to motion parameters (feed, speed,
and plunging) as they directly affect temperature rise and overall
drilling performance. To evaluate a particular drilling perfor-
mance, initially, individual parameters were manually studied. A
custom MATLAB function library was developed to extract these
individual parameters from raw data. However, to make gener-
alized conclusions and differentiate between expert and novice
users, an extensive set of data may be required. Though manual
analysis may have its benefits, it is time-consuming and tedious
for larger data sets. This paper presents an automated approach to
segregate the data into the corresponding sections in the bone and
analyze the signature associated with them.

3 Technical Approach: Drilling Signature
Our goal is to characterize a given drilling task with a sig-

nature in order to facilitate experienced surgeons with means
to assess the training progress of the resident surgeons over the
duration of their residency. Surgical bone drilling is a highly
constrained and precise task meaning that the 3D trajectory of the
drill is more or less straight going through the bone cortices and
coming out. In such a scenario, it stands to reason that getting
a measurable difference between the drilling trajectory of two
individuals would be inherently challenging. Our preliminary
findings indicated that 3D position of points in the operator’s
trajectory, net force, and drilling speed are insufficient metrics

to draw a clear distinction between a novice user and an expert
user in terms of drilling performance. One of the primary reasons
that attributes to this limitation is the constrained nature of the
bone-drilling activity. As a case in point, the drill tip is surrounded
by the bone-material for the entire drilling duration except for the
hollow cavity between two bone cortices in a to-and-fro motion —
the user enters and leaves the bone from the same position. Con-
sequently, the trends for the aforementioned metrics across the
novice user groups look similar when compared to an expert sur-
geon thereby making it difficult to draw comparisons for any type
of performance assessment of the drilling activity. In this work,
we introduce a curve signature metric that we call the drilling
signature. The main idea for the drilling signature is to help
evaluate a resident’s drilling task by comparing their trajectory
to a gold standard; which is an expert surgeon for orthopedics
training.

3.1 Rationale behind Drilling Signature
The design of our drilling signature is based on our observa-

tions of the difference between how expert and novice individuals
control the drill. After several years of practice, expert surgeons
insert the drill into the first cortex at a relatively high speed, move
in reasonably slowly to the second cortex and pay attention to
overshooting once they pass through the second cortex (so as
not to damage the tissue). On the other hand, novices begin
cautiously right from the very beginning and therefore end up
losing control at the end of the first cortex itself. This difference
in expert and novice behavior has two implications on the ge-
ometry of the drilling trajectory. First, even though the nominal
paths are “straight” (both going in and coming out), they are not
sampled equally with time. In fact, from our experience, novice
trajectories are generally densely sampled because they tend to
maintain a slower speed in hope of getting better control. The
second and more important observation is that the effect of noise
generated through the drill’s vibration, the bone’s interaction with
the drill, and the manual response are difference between experts
and novices. It is these two observations — the sampling rate
and the noise profile along the drilling trajectory — that inform
the design a method to objectively (and preferably quantitatively)
distinguish between novices and experts.

To characterize the sampling rate and noise profile along the
drilling trajectories for a given operator, we draw from signal pro-
cessing. There are many previous works noise characterization
for applications such as fault analysis of electrical and mechani-
cal components [13–15], cognitive neuroscience [16], biological
spectral analysis [17], and image processing [18]. More recently,
Cheyrev et al. [19] explain the use of path signatures as well as
their use in machine learning. Signature-based machine learning
models have also been used for distinguishing bipolar disorder
and borderline personality disorder [20]. Few works discuss sig-
nature method from the point of pattern recognition in the cequel
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FIGURE 2. We created a forward kinematics model based on raw data provided by the device; and computed the precise (σ = 3 mm) drill tip position.

clinical trial [21], also, make use of the path signatures to pre-
dict a diagnosis of Alzheimer’s disease [22]. However, with our
current focus on 3D drilling trajectory, we borrow from prior
works using the Laplace-Beltrami operator to conduct 3D shape
analysis [23–27].

3.2 Conceptual Framework
In our approach to characterize the noise in the drilling trajec-

tory, we leverage the notion of Laplacian smoothing. Laplacian
smoothing is a well known technique [28] that has been used
extensively in computer graphics for curve and surface smooth-
ing [29]. The basic idea is simple — for a given manifold (a curve
or a surface) discretized in a piece-wise linear fashion (for curve
this means a poly-line, for surface it is a polygonal mesh), we
replace each vertex of the manifold with the weighted average
of its neighbors. In the continuous case, this is essentially the
application of the Laplace equation (∇2 f = 0) for a harmonic
function ( f ) defined on the manifold.

From a signal processing perspective, what Laplacian smooth-
ing achieves is that it enforces the function f to become harmonic
over a period of time thereby allowing it to reach it’s steady state.
In fact, the same principle is applied in heat diffusion problems.
Now, applying the Laplace operator directly on the coordinates
of a poly-line, which is essentially how our trajectories are rep-
resented, effectively diffuses the curvature on the trajectory. An-
other interpretation of the operator is that an eigen-decomposition
of this operator is equivalent to removing high frequency noise
in the manifold [30–32]. The equivalence between noise removal
and diffusion to steady state provides a powerful clue toward
developing a signature for our application.

We begin by first observing that for any poly-line approxi-
mating a given curve, a repetitive application of the Laplacian
smoothing will ultimately lead to a completely straight line with
uniformly sampled points. However, each point on the poly-line
will take a different amount of time to reach the steady state. For
instance, points whose neighborhoods are already straight (low-

curvature and less noisy) will take less time to reach steady state
than those that are noisy or highly irregularly sampled on the
curve. Now we also note that the time for a given point to reach
steady state can simply be described by the number of iterations
it takes for this point to become static (i.e. there is negligible
difference in the location of this point between two consecutive
applications of smoothing).

Based on these observations, our idea for the drilling signa-
ture is rather simple. We repetitively apply Laplacian smoothing
to the trajectory and record the number of iterations it takes for
each point to reach steady state. Steady state is defined as a state
where the euclidean norm a point before and after smoothing at
a given iteration falls below a certain threshold. Once recirded,
the number of iterations for each point is normalized and referred
as the signature score (s) for a point on a given curve. For a
curve P with k points on it, there will be (S = (s1,s2, ....,sk−1,sk))
signature scores. This signature essentially characterizes the noise
as well as sampling distribution in the drilling trajectory as we
originally desired (Figure 4).

3.3 Algorithm
For a given smoothing iteration i, let us consider a trajec-

tory curve Pi = (p1
i ,p

2
i ,p

3
i , . . . ,p

k−1
i ,pk

i ), where p j
i ∈ Rn. The

smoothed coordinate for every jth point in Pi is given as:

p j
i = 0.5× (p j−1

i−1 +p j+1
i+1 ) (1)

The smoothing is applied successively to the smoothed iterations
of the original trajectory P0 until:

‖p j
i −p j

i−1‖< m ∈ R (2)

Here, m is the threshold for euclidean norm between corre-
sponding points of two consecutive smoothed trajectory curves to
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FIGURE 3. We automated the labelling process to identify different
drilling regions for the raw data — force and position. The drilling speed
is a derived metric computed from the position data.

reach steady state. We found m = 0.005 as a suitable threshold to
verify the steady state of the drilling trajectories recorded in our
data collection. The signature for each point on a given curve is
computed as the normalized number of iterations to reach steady
state as:

s j =
sk− smin

smax− smin
∀ j ∈ [1,k] (3)

Here, sk ∈ [0,1] and Smax and Smin are the maximum and
minimum signature scores respectively along the entire drilling
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FIGURE 4. We automated the labelling process to identify different
drilling regions for the raw data — force and position. The drilling speed
is a derived metric computed from the position data.

curve.

4 Experiment
4.1 Participants

Our interviews with an expert orthopedic surgeon revealed
that most first year resident surgeons haven’t had prior experience
with any type of bone-drilling tasks. Owing to the simplistic
nature of our bone-drilling setup, it is safe to assume that first
year residents fall under the category of novices akin to any non-
medical student who also hasn’t had the opportunity to conduct a
bone-drilling task. We recruited 10 participants randomly sampled
from undergraduate and graduate engineering students recruited
through university advertisement1. The participants were within

1Due to the challenges presented by COVID-19, it was difficult to visit any
medical center to collect data.
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the age group of 18 to 30 years old. According to the information
collected from the participants through a pre-study questionnaire,
8 participants had prior experience with manufacturing related
drilling and 7 rated the expertise from an amateur to intermediate.
Only one participant rated themselves as an expert in drilling.

While the 10 participants served as novice users for our bone-
drilling experiments, we also recruited an expert user, who has
been an orthopedic surgeon for over 30 years, and is responsible
for training orthopedic residents in bone drilling in the Department
of Orthopedic Surgery at the UT Health Science Center. Our goal
is to use the expert surgeon’s signature as a gold standard to
evaluate the performance for the novice users.

4.2 Evaluation Tasks
Our evaluation task is a simple bone-drilling task using 3D-

printed bone surrogates and high precision tools for data recording.
We designed the setup and the drilling task with three goals in
mind: (a) first, we wanted to evaluate the efficacy of our setup in
terms of bone material, and data recording hardware with the goal
of standardizing the setup for orthopedics training, (b) second, we
wanted to create a database of labelled drilling data that allows
easy segmentation of position, force, speed, and other derived
metrics for better analysis of a drilling task, (c) finally, we wanted
to take a preliminary step towards objectifying the existing sub-
jective and qualitative bone-drilling evaluation metrics, towards
the possibility of quantifying drilling parameters in near future.

4.3 Procedure
The study involved drilling through a 3D-printed bone surro-

gate for two bone variants of different hardness; emulating healthy
and osteoporotic bones mechanically and perceptually. The study
took approximately 30 minutes per participant with a minimum
duration of 30 minutes between two consecutive participants.
The drilling setup was sanitized after every experiment, also, the
drill bit was ensured to be free of bone-surrogate debris from
prior experiments.The study started with the participants filling
up a demographic questionnaire and answering pre-screening
questions inquiring their prior experience with drilling. The
participants were then given a general introduction to the
experimental setup and brief demonstration of the bone-drilling
task was also shown. The participants and study investigators
maintained a minimum distance of 6 feet during the study trials,
masks worn by both parties at all times, also, there was a glass
divider separating both. They were also given the option of
donning a latex glove for protective reasons.

Practice: The participants began by making themselves com-
fortable with the setup from two perspectives. First, if they are
donning a glove, does it allow them to perform the drilling task
comfortably and with minimum distraction. Second, if the height
of the setup is ergonomically feasible for a less constrained

drilling activity. We tackled the latter by providing a platform
to the participants ensuring the setup is around the waist level
for them, for a comfortable drilling experience. They were asked
to practice drilling using a drill guide on either bone variants
as randomized by the study investigator to minimize learning
bias. The practice sessions lasted for about 4 - 5 minutes as most
participants had prior exposure to drilling.

Data Labeling: One of the key challenges for data labeling is
the inability to identify the transition of the drill bit inside the
bone-surrogate. Therefore, it is crucial that the study investigator
collaborates with the participants for assistance with labeling.
The participants were instructed to start drilling the moment they
touched the outer surface of the bone surrogate. For transitions
inside the bone, they were requested to shout ”two”, indicating
the drill tip hitting the second cortex. Once drilled through
both cortices, the participants were asked to pause the drilling
momentarily before pulling the drill bit outside of the bone.

Trials: The participants were asked to drill 10 holes in all i.e.
5 per bone variant. The consecutive order of the bones was
chosen randomly across participants and they completed drilling
the 5 holes through their first bone before moving on to the next
bone. We asked the participants to start the drilling process only
when the drill bit was touching the top surface of the bone. The
participants were then given a signal to start the task, after which
they picked up the drilling machine, inserted the drill bit through
the drilling guide and started drilling the hole. Once they had
completed drilling the hole, they were asked to retract the drilling
machine and keep it back on the work-desk, marking the end
of the trial. They were provided with a wet wipe to clear any
bone debris stuck in the flutes of the drill bit. The participants
were given a short break ( 30-60s) after each trial, and a longer
break (approx. 3 minutes) after the first 5 trials while the study
investigator installed the second bone.

The same procedure was followed to collect data from the
expert orthopedic surgeon as well. The expert conducted 10
drilling trials for a given bone variant.

Data: For each of the trials performed by the participants, we
recorded the raw event log containing the (a) 3D position data
of the drilling machine, (b) time taken to drill, (c) force, and (d)
torque data for a given trial.

4.4 Expert Signature Model and Drilling Quality Met-
ric

We use the signature scores s j (, j ∈ [1,k]) on each point
pj of the drilling trajectory as our primary metric to evaluate
drilling performance. The normalized signature scores per trial
for the expert orthopedic surgeon are plotted with respect to the
normalized arc length of the respective trial trajectory. We plot
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the signature (S) vs. arc length (L) for all expert trials for a given
bone type and compute an average curve for all plots. Following
this, we uniformly re-sample the signature along the arc length.
Finally, we compute the average curve for a collection of drilling
signatures for multiple trials of the expert. We treat this average
curve for each bone type as the expert model for the drilling
performance assessment.

Drilling Quality Metric: We use the expert signature model to
compute the root mean squared error (RMSE) between the model
curve and a given user trial signature curve. This value is what we
define as the drilling quality metric. For a given point ui on a user
trial U = (u1,u2,u3, ....,uk−1,uk), where k ∈ Rn. We compute the
RMSE with reference to the corresponding point standardized
model curve M as follows:

RMSE =

√
∑

k
i=1(S(mi)−S(ui))2

k
(4)

Here, S(mi) and S(ui) are signature scores at the ith point for the
user trial curve and standardized model curve respectively.

5 Results
We discuss the results of our experiments from the point

of evaluating the drilling performances for novice users. In the
subsequent sections, we conduct a quantitative assessment using
the drilling signature metric with the expert surgeon as our drilling
performance benchmark.

5.1 Expert Models for Drilling
In order to standardize the expert surgeon data as our ref-

erence measure, we computed two expert models using drilling
signatures across all expert trials for a given bone variant. How-
ever, we observed a difference in expert drilling signature scores
between the two bone types, and decided to benchmark each bone
variant with individual expert model based on the aforementioned
approach (§4.4). First, we resampled 2000 equidistant values
along the X-axis of the drilling signature plot; that represents the
normalized arc length. The purpose for this larger distribution was
to evenly capture the drilling signature across all expert trials for
a bone variant. Further, we computed the drilling signature values
for each expert trial for a bone variant at the resampled arc length
values using piecewise linear approximation. Subsequently, we
calculated the average of the new drilling signatures computed at
the resampled points, across all the trials for a given bone variant,
thus, resulting in two expert drilling signature Models across the
two bone variants (Figure. 5). We use these expert models as
our benchmark reference to objectively assess the quality and
consistency of an user’s drilling trials across both bone variants.
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FIGURE 5. Plots showing the Signature Curves and Expert Models
for the Orthopedic Surgeon’s trials on (a) Osteoporotic Bone (OB) and
(b) Young Bone (YB), along with the RMS Errors for each trial

5.2 Quality of Performance
Our primary goal for creating the expert models was to use

them to evaluate the drilling performance of the users’ trials on
the two bone variants. We did this by following the aforemen-
tioned approach (§4.4) of calculating the RMSE between the
expert model for the specific bone type and each of the user trials’
signature curve, which we refer to as the quality of performance.

We observed that the users, in general, performed worse
than the expert models across both the bone variants. While this
observation was expected, the overall quality of performance of
users on the Young Bone (Avg. RMSE = 0.248) was worse than
that of their performance on the Osteoporotic Bone (Avg. RMSE
= 0.153). This is in contrast to the expert’s performance on the
two bone variants, where the expert performed better on the Young
Bone (Avg. RMSE = 0.056) compared to the Osteoporotic Bone
(Avg. RMSE = 0.075). A reason for this could be the difference
in hardness levels of the bone variants, as the Young Bones are
harder and thus provide more resistance to the drilling action
compared to the Osteoporotic Bone. This is further seen when we
compare each of the users performances between the two bones
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FIGURE 6. Plots showing the Signature Curves of all the users’ trials across both the bones: Osteoporotic Bone (OB), Young Bone (YB) compared
with the bone specific Expert Models. The x-axis for the plots correspond to the Normalized Arc Length and the y-axis corresponds to the Normalized
Signature Scores.

(Table 1), as every single user performs better on the Osteoporotic
Bone.

We made further observations on the nature of the users’
signature curves when compared with the expert models (Figure. 6.
The expert models reached their peak signature values at smaller
values of the normalized arc length than all of the users trials.
We observed the peak shifting to the right for almost all of users’
trials, irrespective of the bone variant. One reason for this shift
in peak could be due to the users drilling the bones at a slower
speed compared to the expert. The expert generally completed
their drilling trials much quicker than most of the users. Their
approach to the different regions of the bones was also quicker,
which can be explained by the steep initial slope of the expert
models when compared to the gradual slope of the users’ signature
curves. Most users performed better on the Osteoporotic bone
with respect to the initial steepness of the slope, which can again
be explained by the hardness of the bones.

5.3 Consistency of Performance
We define consistency as the repeatability of a user’s drilling

behaviour across consecutive trials for a given bone type, as
well as, across both bone variants. On analyzing the user trials
with respect to the expert model, we observe consistently poor

drilling behavior for the Osteoporotic Bone variant (Figure. 6)
when compared with the the respective expert model. On the
other hand, the drilling behaviour for the Young Bone variant was
poor, but highly inconsistent as observed for the varying RMSE
scores across drilling trials for all participants (Table. 1). This
indicates that users were relatively comfortable drilling through
the Osteoporotic bone variant due to relatively softer material
hardness, also, faced minimal drilling resistance unlike the Young
Bone variant.

We also observed that a higher consistency across one bone
might not necessarily mean the user is experienced. This can
be clearly seen for User 3 (User 3 YB plot in Figure. 6), whose
RMSE for the Osteoporotic Bone was the lowest of all the users,
but second highest for the Young Bone. We observe the opposite
behavior for User 6, whose consistency across trials was better
for the Young Bone (range of RMSE = 0.09), when compared
with the trials on Osteoporotic Bone (range of RMSE = 0.22).
The expert on the other hand, consistently performed better across
both the bone types (range of RMSE for Young Bone = 0.081;
Osteoporotic Bone = 0.087).

8 Copyright © 2021 by ASME



5.4 Participant Specific Observations
While we observe the general trends in quality and consis-

tency of performance for the users in the above sections, there are
some interesting things to note about some of the specific signa-
ture curves of the users. Firstly, almost all users have at least one
trial, where the signature curves dip and then rise again to form a
second peak (See trials from User 3 YB, User 4 OB, User 6 OB,
User 7 YB, User 8 OB/YB and User 9 YB in Figure. 6). This dip
is usually seen towards the middle and later half of the sections of
the curve and it signifies a lower number of iterations required to
straighten the drilling path curve, which might be caused by the
users stopping their drilling motion for a small amount of time,
before proceeding through the remaining regions of the bones.
This is better explained by the sudden rise and forming of the
second peak, which shows the continuation of the drilling motion.
Another interesting observation is the sudden change in the slope
of the signature curves for some of the participants (See trials
from User 1 OB, User 2 OB/YB, User 4 YB, User 5 OB/YB, User
7 OB/YB, User 9 OB in Figure. 6). These sudden changes in
the slopes are usually seen in the initial and final sections of the
curves and may correspond to a sudden change in the drilling
action by the user. The flatter slopes signify very small changes
in the signature scores, which may be due to a slow and gradual
drilling motion. The steeper slopes signify a big change in the sig-
nature score, which may be a result of a faster drilling approach.
This may be explained by a slow-start and slow-end approach that
novice users may use as a means to be careful while completing
the task.

6 Discussion
In this section, we highlight the key limitations of our work

and discuss the challenges faced in this paper.

6.1 Limitations
Our drilling signature successfully helps distinguish between

the overall bone-drilling behaviour of a non-expert user, with
respect to an expert surgeon. However, one of the fundamental
limitations of our metric is the lack of a ground truth reference to
evaluate the efficacy of our metric. In this paper, we benchmark
the drilling performance of an expert surgeon as our reference
comparison, although, the presence of a ground truth would have
helped form a fundamental basis towards the development of
novel user performance metrics. Furthermore, we only had one
expert surgeon as our user performance benchmark. This limita-
tion is brought by the varying level of expertise across orthopedic
surgeons, also, how many years of bone-drilling experience is
sufficient to help compute our expert model. Recruiting more
expert surgeons would be one of our immediate future goals to
strengthen our evaluation assessment. On similar lines, there is
a need to collect more user trials from novice users, as well as,

Osteoporotic Bone Average

User 1 0.11 0.13 0.16 0.17 0.27 0.17

User 2 0.06 0.08 0.13 0.24 0.30 0.16

User 3 0.07 0.08 0.11 0.13 0.14 0.11

User 4 0.11 0.11 0.15 0.16 0.28 0.16

User 5 0.09 0.11 0.13 0.14 0.19 0.13

User 6 0.10 0.15 0.16 0.24 0.32 0.19

User 7 0.17 0.20 0.24 0.27 0.44 0.26

User 8 0.14 0.15 0.22 0.22 0.28 0.20

User 9 0.09 0.14 0.15 0.17 0.18 0.15

Young Bone Average

User 1 0.10 0.21 0.23 0.26 0.37 0.23

User 2 0.11 0.16 0.18 0.23 0.23 0.18

User 3 0.30 0.30 0.32 0.35 0.44 0.34

User 4 0.15 0.16 0.27 0.29 0.42 0.26

User 5 0.20 0.30 0.31 0.32 0.37 0.30

User 6 0.16 0.20 0.22 0.22 0.25 0.21

User 7 0.35 0.38 0.38 0.39 0.40 0.38

User 8 0.27 0.27 0.27 0.28 0.38 0.29

User 9 0.19 0.28 0.40 N/A N/A 0.29

TABLE 1. RMS Error Values for each of the users’ trials for both bone
variants, when compared to the bone specific Expert Models

resident surgeons across different years of training. This will not
only help us understand the distinction between a novice (firs year
resident) and expert user, also, compare training progress with
orthopedic residents in their second and later years of residency..

We also experienced long drilling signature computation
times (approx 15 - 20 minutes) for a given user trial. One of the
primary reasons for this is the relatively longer drilling duration,
resulting in larger trajectory points (¿ 10,000). This limitation
can also be attributed to our threshold parameter m that ensures
a stead state for a given drilling trajectory. There is a need for
efficient recording of user drilling data and a threshold parameter
to speed up the signature computation process. In addition to
signature plots, we observed the histogram plots for the drilling
signature also to show distinctive distributions for different user
expertise and bone variant. One of our near goals is to explore
the histogram plots and compare its efficacy with respect to the
expert model based on signature plots.
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6.2 Multi-modal Data
We record and process different types of data such as drilling

force, drill tip position, and drilling speed for a bone-drilling
activity. While the focus of this work primarily emanates from the
drilling trajectory, our preliminary analysis of other parameters
have shown observable differences in the force and speed profiles
of expert and novice users. We believe that an individual’s drilling
behaviour is not dependent on their physical motion, but also, in
the way they apply force while drilling, also, the rate at which
they drill through a solid object based on the material resistance;
which in our context is a 3D-printed bone surrogate. Since force
and speed data emulate signals across a time duration, we could
extend our signature approach to characterize drilling behaviour
based on data other than the drilling trajectory. The collective
analysis of different physical parameters of a bone drilling task
could help us better understand parameters such as force, which
isn’t as comprehensible as spatial motion or drilling speed.

6.3 Bone Materials
In this paper, we conducted our user evaluation based on two

bone variants — Young and Osteoporotic, emulating perceptual
and physical properties of bones across young and old age groups.
3D-printing the bone surrogates makes it easier to design, manu-
facture, and improvise upon the material properties. Similar to our
metric, the current bone models are experimental and constantly
improved based on expert surgeon feedback to match the material
properties of an actual bone. Our comparison of novice vs. expert
users shows inconsistent and erratic signature plots for the Young
Bone variant trials. We believe that user performance was affected
by material hardness of the Young Bone surrogate, and designing
a bone with varying intermediate hardness between the Young
and Osteoporotic bone hardness could provide a new way to train
orthopedic residents. The idea is that novice users learn to drill
from softer to harder bones or the opposite way, so as to develop
fine motor control crucial for patient safety in orthopedic surgery.

7 Conclusion & Future Directions
In this paper, we showcase the possibility to objectively eval-

uate and asses drilling performances across user groups of varied
expertise. The preliminary success of the drilling signature lays
down numerous possibilities of exploring and rethinking different
bone-drilling parameters towards categorization and classifica-
tion of user behavior across expertise, as well as, bone-variants.
This highlights the possibility of quantifying drilling performance
from the point of improving orthopedic resident training. Our
goal in the future is to continue collecting and analyzing drilling
data across users, and design robust metrics to distinguish drilling
behavior of a novice from an expert surgeon.
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