
Adaptive Training on Basic AR Interactions: Bi-Variate Metrics and

Neuroergonomic Evaluation Paradigms

Shantanu Vyasa, Shivangi Dwivedib, Lindsey J. Brennerb, Isabella Pedronb, Joseph
L. Gabbardc, Vinayak R. Krishnamurthya, Ranjana K. Mehtad

aJ. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College
Station, Texas; bWm Michael Barnes ’64 Department of Industrial & Systems Engineering,
Texas A&M University, College Station, Texas; c Grado Department of Industrial & Systems
Engineering, Virginia Tech, Blacksburg, Virginia; d Department of Industrial & Systems
Engineering, University of Wisconsin Madison, Madison, Wisconsin

ARTICLE HISTORY

Compiled September 4, 2023

ABSTRACT
Augmented Reality (AR) training is a cost-effective and safe alternative to tradi-
tional instructional methods. However, training novices in basic mid-air AR inter-
actions remains challenging. To address this, we aimed to: (a) develop a robust
metric to evaluate user performance across different AR interaction techniques and
develop adaptation models to predict additional training requirements; (b) evaluate
the adaptation models using a neuroergonomics approach. We conduct a two-phase
study during which, novice participants perform simple AR interactions: poking and
raycasting. In Phase-I, twenty-seven participants’ data is used to identify a bi-variate
performance metric based on median completion time and consistency. Unsupervised
models are trained using this metric to classify participants as low/high performers.
In Phase-II, we evaluate the models on twenty-one new participants and analyze
the differences in performance, neural activity and heart-rate variability between
low/high performers. Our study showcases the effectiveness of our models and fur-
ther discusses the potential of integrating neuroergonomics for advanced AR-based
training applications.
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1. Introduction

Augmented reality (AR)-based systems have seen widespread usage over the last few
decades due to improvements in hardware and software technologies (Billinghurst,
Clark, Lee, et al., 2015). Combining the real and virtual worlds provides unique ben-
efits that have encouraged the integration of AR into various fields, ranging from
manufacturing and construction industries (Bottani & Vignali, 2019), to surgery and
emergency response (Vávra et al., 2017). A major application of AR in these fields,
more specifically, with AR immersive headsets, has been training personnel. Immers-
ing users in complex environments where they can interact with digital objects has
led to the development of training applications that can reduce costs, time, and dan-
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gers associated with training tasks (Barsom, Graafland, & Schijven, 2016). This is
especially true in fields such as emergency response, where training new personnel
may be dangerous and require expensive resources (Buckman, 2005; Evarts & Mo-
lis, 2018). However, like any emerging technology, AR has its own set of challenges,
namely the need for better display technology, richer and more intuitive interactions,
improved tracking systems, and technology acceptance (Billinghurst, 2021). In this
study, we will focus on the challenge of training users on interactions specific to AR
environments that might cause technological barriers to entry.

Gibson’s assertion, “perception is for action” (Gibson, 2014), has influenced the
design of interactions in computational support systems that align with the conflu-
ence of the perception-action-cognition cycle that is inherent in human manipulations.
This is particularly relevant in virtual environments where users engage with elements
both within and beyond their physical reach (Bowman, 1999). Proximity to the action
space is a key consideration in designing interactions that enable effective engagement.
However, some AR-based system interactions do not necessarily mimic how humans
interact with real-world objects (Billinghurst, 2021) and can feel unnatural to users.
While there is continual research on tangible and multi-modal interfaces for AR to
make them feel more natural (Mohanty & Krishnamurthy, 2021; Nizam et al., 2018),
these interfaces are yet to be fully integrated into fielded applications. As such, users
with no prior experience with AR-based systems may need to familiarize themselves
with basic interactions in AR like selecting and moving digital objects, before being
able to complete more complex tasks like training. In the absence of such “familiar-
ization”, adoption of AR applications may be slow, or worse, fail.

1.1. Adaptive Training & Neuroergonomic Evaluation

Training applications in AR are typically domain-specific, such as medical training
(Barsom et al., 2016) and assembly (Westerfield, Mitrovic, & Billinghurst, 2015), with
a lack of analysis on how novice users’ familiarity with basic AR interactions affects
the domain-specific tasks. Thus, research is needed that focuses on developing training
and evaluation paradigms for accelerating learning on basic AR interactions. This will
enable users to effectively interact with domain-specific AR functionalities. A robust
training or tutoring system will also have to adapt to a wide range of users with
different learning abilities. As a result, having an adaptive training system is preferred
over a non-adaptive training system (Peretz et al., 2011). More generally, adaptive
training can be defined as a training system where the problem, stimulus, or task can be
varied depending on the trainees’ performance (Kelley, 1969). Some user-based metrics
that help predict the need for adaptation stem from a trainee’s raw performance data,
their prior expertise, and their working memory capacity (G. Huang et al., 2021). In
AR, adaptive training systems have mainly been used for application-specific tasks. For
instance, Westerfield et al., (Westerfield et al., 2015) developed an intelligent tutoring
system (ITS) for an AR training application on motherboard assembly. The application
provided feedback messages to trainees depending on their actions during the assembly
task. Similarly, Huang et al. (G. Huang et al., 2021), developed an adaptive tutoring
system for machine tasks where the system continually monitored the users’ states
(e.g., their observations and interactions) and machine component states (e.g., what
buttons of the machines were active). The training system then made predictions
on both of the future states to decide whether the user required more information
to improve their learning outcome. Militello et al. (Militello, Sushereba, Hernandez,
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& Patterson, 2019), also provided principles for designing adaptive training in AR
that add haptic aspects to visual training, determining the cognitive states of users
to adaptively change tasks to reach the desired states, and make simulations appear
more realistic. A more personalized approach has also been used where trainees are
awarded points based on their performance in order to improve their engagement in
the training process (Albayrak, Öner, Atakli, & Ekenel, 2019; Ma et al., 2016).

While training applications, both in the traditional and AR settings, focus on
performance-based metrics to evaluate individuals, prior works have shown that assess-
ing cognitive load (e.g., intrinsic, germane, and extraneous load) and mental workload
can provide a better understanding of an individual’s performance (Biddle & Buck,
2019; Tao et al., 2020). It is shown that the cognitive load and mental workload of
individuals can affect their ability to learn and recall information (Souchet, Philippe,
Lourdeaux, & Leroy, 2022; Steed, Pan, Zisch, & Steptoe, 2016) from different medi-
ums, such as screens and AR headsets. Typically surveys such as the Cognitive Load
Theory (Klepsch, Schmitz, & Seufert, 2017) and NASA Task Load Index (TLX) (Hart,
2006) are used to collect these metrics. Additionally, physiological measures such as
heart rate and heart rate variability (HRV) have also been used as reliable measures
to assess mental effort (Mukherjee, Yadav, Yung, Zajdel, & Oken, 2011) with novel
interfaces (Dwivedi et al., 2022) and to differentiate between high and low perform-
ers in cognitive tasks such as playing chess, where high performers had significantly
higher temporal HRV (Fuentes-Garćıa et al., 2019). Studies also show increased car-
diovascular load (higher heart rate and lower temporal HRV) among low performers
in VR-based training environments (Hayes et al., 2022). More recently, neural mea-
sures have been used to quantify cognitive load and mental workload, where increased
brain activity corresponds to high cognitive load and mental workload (Borghini, As-
tolfi, Vecchiato, Mattia, & Babiloni, 2014; Bunce et al., 2011; Kesedžić, Šarlija, Božek,
Popović, & Ćosić, 2021). Neurophysiological measures like brain imaging using func-
tional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) are also
used to differentiate between high and low performers during training, where high per-
formers exhibit higher task-related brain activation patterns (Abujelala, Karthikeyan,
Tyagi, Du, & Mehta, 2021; Shi, Zhu, Mehta, & Du, 2020; Walia et al., 2022), and where
VR-based training under intense stress is associated with reorganization of compen-
satory brain networks (Tyagi et al., 2021). Therefore, neurophysiological metrics, such
as brain activation and connectivity patterns and HRV responses, may be useful in
evaluating performance in a variety of tasks, including AR-based training tasks.

One advantage of AR is that it enables training on psychomotor tasks (LaViola et
al., 2015). In fact, performance on psychomotor tasks has been found to improve and
be more accurate in real-world tasks when users were trained in an AR environment
(Henderson & Feiner, 2011). The impact of the cognitive demand of psychomotor tasks
on an individual’s performance has also been measured by analyzing region-based brain
activation and brain functional connectivity (Gevins & Smith, 2003). Changes in activ-
ity in different brain regions such as the premotor cortex, supplementary motor area,
primary motor, and frontal eye field/cingulate gyrus can indicate different measures of
cognitive demand of psychomotor tasks (Micheletti, 1996). Additionally, increased con-
nectivity between functionally different brain regions signals neural efficiency (Tomasi,
Wang, & Volkow, 2013). However, whether AR environments alter psychomotor learn-
ing and associated neural dynamics remains unexplored. Given that AR environments
are associated with distinct changes in cognitive load, capturing brain activity and
connectivity can shed light on the neural processes underlying psychomotor learning
in AR.
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1.2. Personalized Adaptive Training & its Challenges

Recent emphasis on personalization (Mehta et al., 2022) has led to efforts focusing on
developing state-based adaptive-training models in AR/VR that incorporate real-time
neurophysiological feedback based on the cognitive load experienced by the trainee
(Dey, Chatburn, & Billinghurst, 2019; Doswell & Skinner, 2014). The models use heart
rate and brain activity to measure trainee cognitive load as they perform the tasks
and accordingly decide the tasks’ difficulty. However, these studies focus on developing
state-based adaptations to facilitate learning of complex tasks that require some prior
knowledge on the topic, such as psychomotor surgical training. There has been little to
no prior work in the development of performance-based adaptive training techniques
that help participants become proficient in fundamental AR tasks, while simultane-
ously studying the effect of such strategies on their neurophysiological activities. A
major challenge here is the lack of guidance on defining proficiency in AR interactions
and the lack of transparency in reporting how familiarization with AR interactions
impacts subsequent learning in complex domain-specific applications. Examining neu-
rophysiological processes associated with learning may also help ascertain if specific
adaptive training on AR interactions is effective for a user’s learning process. Given
the lack of appropriate and relevant metrics to assess learning of AR interactions,
neurophysiological examinations can help assess the utility of such metrics.

1.3. Bi-variate Metric & Two-phase Study Approach

The present study is aimed at providing adaptive training in fundamental AR-based
interactions while evaluating its effect on performance and associated neurophysio-
logical responses in learners. We approach this problem by conducting a two-phase
study, wherein Phase-I was used to collect performance-based data from novice users
performing simple ‘selection’ tasks using different AR interactions (e.g., poking and
raycasting). The aim of Phase-I was to identify performance metrics that could be used
to develop and train an adaptation model for identifying low and high-performing in-
dividuals. During Phase-II, the adaptation model was tested on novice participants
to assess its effectiveness. To this end, we collected neurophysiological data across a
training task and an evaluation task. The impact of adaptation on neurophysiological
markers of learning were also examined by recording changes in hemodynamic re-
sponses from the fronto-motor brain region (i.e., supplementary motor area, premotor
cortex, primary motor area, and frontal eye field)using fNIRS, alongside performance
data. We hypothesized that neurophysiological changes would occur with task repe-
tition, i.e., strengthening neural connections with performance improvement (Jensen,
2005). We also hypothesized that there would be increased activation and stronger
functional connectivity with improved performance (Ghilardi et al., 2000; Micheletti,
1996; Seidler, Noll, & Thiers, 2004). Additionally, we collected heart rate variability
as another physiological measure and hypothesized that improvement in performance
would result in lower physiological load (Fuentes-Garćıa et al., 2019; Hayes et al., 2022;
Suriya-Prakash, John-Preetham, & Sharma, 2015). As a result of our two-phase study,
we made three key contributions in this paper. First, we develop a multi-dimensional
(specifically bi-variate) metric based on time and consistency to evaluate user per-
formance on basic AR interactions. Secondly, we develop an unsupervised adaptation
model based on the metric to identify users who require additional training in different
interaction techniques. Finally, we show the efficacy of our model through a systematic
neurophysiological analysis of the classification capabilities of the adaptation models,
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highlighting the differences in functional connectivity, brain activation, heart-rate vari-
ability and subjective responses between low and high performing individuals.

[Figure 1 here]

2. General Methods

2.1. Types of AR Interactions

In this work, we focused on the fundamental task of “selection” in AR environments
for head-mounted displays (HMD). The “selection” task enables users to interact with
digital objects such as buttons and keyboards and is a fundamental building block of
many AR applications (Bowman, 1999; Xu, Liang, He, & Wang, 2019). Learning the
interaction skills involved in the “selection” task can have a broader impact on a user’s
overall AR interaction skills, thereby providing a foundation for more complex AR
tasks (Looser, Billinghurst, Grasset, & Cockburn, 2007). There are various interaction
techniques available to accomplish the “selection” task in AR environments depending
on the proximity of digital objects to the user. The ‘poking interaction’ is used when
objects are within arm’s reach of the user and involve selecting the virtual object by
directly “poking” it. Alternatively, the “raycasting interaction” (or distal pointing) is
used when elements are out of arm’s reach, and selecting an object involves casting
a ray from the middle of the palm onto an object, and then selecting the object by
pinching the index finger and thumb. Therefore, familiarizing a user with both of these
interaction types is important to learn the ‘selection’ task in the AR environment.

2.2. Performance Metrics

With the primary goal of adaptively training users on AR interactions (poking and
raycasting), it was essential for us to identify users who needed additional training,
which has typically been dependent on the context of the task at hand. For instance,
Huang et. al. (G. Huang et al., 2021), monitored the state of the machines that learners
interacted with to gauge user performance during machine tasks. Similarly, in tasks
involving casualty care, the speed with which the learners make clinical decisions can
be an indicator for adaptation (Tanaka, Craighead, Taylor, & Sottilare, 2019). As our
focus was on the “selection” task in AR, we wanted to identify a metric that could be
easily adopted in many different contexts. As such, we defined a bivariate performance
metric based on two variables: time and consistency.

The time variable corresponded to the median time to complete a unit interaction
across all trials. This variable helped us understand how fast the user was able to
complete a task using a particular interaction type. Selecting the median time over
mean time allowed us to mitigate the effect of outliers that are typically observed in
the first few training trials while learning new skills (Anderson, Grossman, Matejka, &
Fitzmaurice, 2013). Users who performed the task more quickly were expected to have
a lower median completion time compared to slower users. However, only considering
the overall median time limited our understanding of the users’ learning rates which
is better analyzed through the variability across trials (Kast & Leukel, 2016; Wu,
Miyamoto, Castro, Ölveczky, & Smith, 2014).

The consistency variable, therefore, accounted for the users’ change in performance
across trials and allowed us to quantifiably assess the change in the users’ learning
behavior. Prior works have highlighted the importance of analyzing consistency as a
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way to understand learning behavior in domains such as online courses and virtual
learning environments (M lynarska, Greene, & Cunningham, 2016; Sher, Hatala, &
Gašević, 2020; Zhou & Bhat, 2021). Taking inspiration from these works, we measured
consistency by fitting a quadratic polynomial curve on the users’ median times per
trial, and then calculating the deviation between the fit curve and the median times per
trial using root mean square error (RMSE). A quadratic polynomial curve was chosen
over higher degrees to prevent overfitting on users’ data. Users who were actively
learning across all trials would exhibit more variability and therefore, less consistency
compared to users who learnt the skills in the first few trials.

The combination of the time and consistency variables effectively characterized user
performance for the given task. A low median completion time but a high RMSE value
suggested that the user was still learning and may have completed some trials quickly.
Conversely, if their median time was high but their RMSE was low, it indicated that
the participant was consistently performing poorly. A high-performing user, however,
would exhibit low median time and low RMSE value, indicating that they were able
to learn the skills in the given trials.

2.3. Two-Phase Study

The bivariate performance metric helped us evaluate individual users across different
interaction types. However, to identify users who needed additional training (low per-
formers) and those who did not (high performers), we needed a baseline to which we
could compare each user’s metric values. Our goal in this work was to help novices learn
and familiarize themselves with the different AR interactions, and not necessarily mas-
ter them. Comparing them to experts would almost always result in all users requiring
additional training. Instead, comparing novice users’ performance across themselves
can help us identify those who learned the interaction well and those who had not. To
achieve this, we conducted two studies, where the Phase-I study involved collecting
data on novice users to develop an adaptation model and identify the baseline perfor-
mance metrics, and the Phase-II study involved testing the adaptation model on new
novice users and analyzing the model’s effectiveness with respect to the performance
metrics, and neural and physiological dynamics of learning.

3. Phase I Study

3.1. Participants

Twenty-seven participants (twelve female; fifteen male) were recruited with a mean
age of 30.96 (SD = 15.6) years. Of these, sixteen were from the local student popula-
tion, while the others were individuals with a background in emergency response. All
participants self-reported that they were right-handed and had less than one hour of
AR and/or VR experience prior to participating in the study. All procedures were ap-
proved by the university’s Institutional Review Board and complied with the American
Psychological Association Code of Ethics. All participants were equally compensated
with $30 gift cards for their involvement.
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3.2. Protocol

Following informed consent, participants completed background questionnaires cov-
ering demographic information and the NASA Task Load Index (TLX). Participants
then donned an AR-HMD (HoloLens 2, Microsoft Corporation, USA) and the study
tasks began. Training: Participants performed two tasks, one corresponding to each of
the poking or raycasting interaction. The tasks were ordered in an increasing order of
difficulty, where all participants completed the poking interaction task first, followed
by the more difficult raycasting interaction task (Argelaguet & Andujar, 2013; Kop-
per, Bowman, Silva, & McMahan, 2010). For the poking interaction task, participants
entered an AR application that displayed ten sequentially numbered buttons in a ran-
dom order placed within their arm’s reach. Participants were instructed to select the
buttons in ascending order from 1−10 by poking them with their fingers as quickly
and accurately as they could (Figure 1a). Following the poking interaction task, par-
ticipants entered a similar application for the raycasting interaction task, with the
buttons located away from their arm’s reach. They used the raycasting approach to
sequentially select the buttons in ascending order (Figure 1a). Participants completed
eight trials for each of the tasks, where the order of the numbered buttons were ran-
domized after each trial. Following each task, they were asked to complete the NASA
TLX (Hart, 2006) and Cognitive Load Theory (CLT) surveys (Klepsch et al., 2017)
for the subjective assessment of their workload and cognitive load experienced during
tasks. Additionally, participants were queried regarding their subjective experience of
fatigue and the underlying factors contributing to it. Participants concluded the study
with User Engagement Scale (O’Brien, Cairns, & Hall, 2018) to measure differences in
engagement across training and evaluation in an AR environment. The entire protocol
took approximately 2 hours to complete.

3.3. Training the Adaptation Models

The temporal performance data collected for each participant served as the training
data for developing adaptation models for both of the interaction types. The challenge
in developing such models was the lack of prior empirical benchmarks or heuristics
that could serve as ground truth references. As such, the models would first need to
identify the baseline values for the performance metrics and then classify participants
as low and high performers (Figure 1). The problem, therefore, became that of an
unsupervised clustering problem resulting in the learning of two clusters, i.e., clusters
corresponding to low performers and high performers. We opted to use the k-means
algorithm for our adaptation model due to the low complexity of the training data and
simple representation of the model output in the form of cluster centroids (Saxena et
al., 2017). We first standardized the two features (i.e., time and consistency values)
by removing the mean and scaling it to unit variance. Next, we used the scaled data
to train the k -means model to compute the two centroids corresponding to the two
clusters (which we call the training centroids). The centroid with the lower RMSE value
and the median completion time was labeled as the high-performance centroid, whereas
the centroid with higher values for the variables was labeled as the low-performance
centroid (Figure 2). Participants were classified as low or high performers depending
on the label of their closest centroid, measured using the Euclidean distance. Using this
method, we trained two different models: one for the poking interaction and another for
the raycasting interaction as both interactions are fundamentally disparate, potentially
requiring different training strategies.
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Here, we note that only the first six trials were used for each task when developing
the adaptation models, owing to the results of our fatigue survey, where 33% (9/27) of
the participants indicated that the training tasks induced fatigue specifically causing
discomfort in their arms and shoulders, highlighting a common drawback of mid-air
AR interactions (Brasier, Chapuis, Ferey, Vezien, & Appert, 2020).

In regards to the implementation details, we utilized a laptop equipped with an
AMD Ryzen 9 CPU, an NVIDIA 3070 GPU and 16gb RAM to train the adaptation
models. The models were trained using the scikit-learn (Pedregosa et al., 2011) and
numpy (Harris et al., 2020) libraries available for the Python programming language.

[Figure 2 here]

3.4. Model Training Results

The training of our adaptation model resulted in the clustering of nine and fifteen
out of the twenty-seven participants as low performers for the poking and raycasting
interactions, respectively (Figure 2). For the poking interaction, median time to press
a button (time variable) corresponding to the low and high-performance centroids was
found to be 1.36 s and 0.96 s, respectively. Similarly, the RMSE value (consistency) was
found to be 0.083 s and 0.197 s for low and high-performance centroids respectively.
For raycasting, the values corresponding to the time and consistency variables were
found to be 3.59 s and 0.576 s for the low-performance centroid and 1.93 s and 0.223
s for the high-performance centroid respectively. These centroids formed the basis for
classifying new participants into low or high-performing clusters.

4. Phase II Study - Methods

[Figure 3 here]

4.1. Participants

For the Phase II study, twenty-one participants (nine females; twelve males) were
recruited within the age group of 19 to 37 years (mean = 23.52; SD = 4.31). One
participant was excluded due to the incompleteness of the study caused by AR sickness.
All participants were from a university community, with educational backgrounds in
engineering (n = 16), science (n = 2) and public health & medicine (n = 2). All
participants self-reported to be right-handed and have less than one hour of AR and/or
VR experience. All procedures were approved by the university’s Institutional Review
Board and complied with the American Psychological Association Code of Ethics. All
participants were equally compensated with $30 gift cards for their involvement.

[Figure 4 here]

4.2. Protocol

Following informed consent, participants were equipped with relevant bioinstruments
and completed background questionnaires covering demographic information and the
NASA TLX. Participants were then instructed to sit at rest with their eyes closed for a
three-minute baseline collection. After the baseline was completed, participants donned
an AR-HMD (HoloLens2, Microsoft Corporation, USA), and the study protocol began.
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The protocol took approximately 2 hours to complete and is illustrated in detail in
Figure 4.

Training Task: Participants completed 6 trials of the poking and raycasting inter-
actions with a two-minute break in between the exercises. The order of the tasks was
counterbalanced across the study sample owing to the effect that fatigue might have
on the second task. NASA TLX and CLT survey responses were collected after each
interaction exercise.

Adaptation Task: Once the participants completed the Training Task, their tem-
poral data was input into the adaptation model that classified them as low or high
performers. Participants classified as low performers were given three additional trials
of the interaction task, followed by the survey response collection.

Evaluation Task: All participants, irrespective of their performance, completed an
evaluation task, which involved three trials of each interaction type. Along with NASA
TLX and CLT surveys, participants completed the User Engagement Scale, System
Usability Scale, and Device Feedback surveys.

4.3. Bioinstruments

Functional near-infrared spectroscopy (fNIRS) (NIRSport2, NIRx Medical Technolo-
gies LLC, USA) was used to monitor cortical hemodynamics at 50 Hz. The fNIRS
probe map used an international 10/10 EEG system and captured 20 channels (based
on Brodmann areas) using 8 infrared sources and 8 detectors (a total of 16 optodes)
operating at two wavelengths (λ = 760 and 850 nm). This 20-channel layout (Fig-
ure 3(b)) mapped hemodynamic activity in 5 regions of interest: frontal eye field/
cingulate cortex (FEF/CG), right/left premotor cortex (R/L PMC), supplementary
motor area (SMA), right/left primary motor area (R/L M1). Participants were also
equipped with a chest-worn Actiheart device (Actiheart 5, CamNTech, Inc., UK) that
recorded an electrocardiogram (ECG) signal at 1024 Hz to quantify physiological load.
Overall, participants were equipped with the two bioinstruments described above that
provided data for our neuroergonomic evaluation.

4.4. Testing the Adaptation Model

Our adaptation model was tested on the temporal performance data obtained from
Phase II participants. Once a participant had completed their training task, their per-
formance metrics were computed. We then added their two-dimensional data point
(time and consistency) to the 27 training data points and recomputed the low and
high-performance centroids and subsequently found the closest centroid to the new
participant’s data point. Next, we computed the Euclidean distance between the se-
lected centroid and the training centroids. The new data point was then labeled based
on the label of the training centroid corresponding to the shortest distance. While
this method is different from classifying the new data point by simply finding its clos-
est training centroid, we were able to better adapt to the effect of potential outliers
that commonly affect the k -means clustering algorithm (Saxena et al., 2017). After
classifying the new participant as a low or high performer, we provided relevant recom-
mendations for additional training. If the participant was classified as a low performer
on a specific interaction (e.g., poking or raycasting, or both), they were asked to com-
plete three additional trials of that interaction before moving on to their evaluation
task, whereas, for a high performer no additional trials were required.
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4.5. Neuroergonomic Evaluation

The fNIRS signal processing was performed using algorithms from the Homer2 tool-
box in MATLAB. Preprocessing included the removal of motion artifacts through peak
detection and spline interpolation and the removal of specific bad channels based on
recommendations from Homer2 (Dubb & Boas, 2016; Huppert, Diamond, Franceschini,
& Boas, 2009). Two participants’ data were removed from fNIRS processing due to
significant noise. The modified Beer-Lambert Law was applied to determine the change
in oxygenated, deoxygenated, and total hemoglobin concentrations. fNIRS signal pro-
cessing and cleaning was done using an in-built function in MATLAB (Homer2, 2021)
(Jahani, Setarehdan, Boas, & Yücel, 2018; Zhu, Rodriguez-Paras, Rhee, & Mehta,
2020). After the application of the processing stream, optical density was converted
to concentration to measure oxygenated, deoxygenated, and total hemoglobin. Oxy-
genated hemoglobin (HbO) was further used to calculate functional connectivity, as
it is most responsive to changes in cerebral blood flow due to the motor and working
memory tasks (Hoshi, Kobayashi, & Tamura, 2001). A rest period of 3 minutes was
provided for the global baseline, which was used to calculate peak activation for each
phase (training and evaluation phases) for six different regions of interest (ROIs) for
each participant (Zhu et al., 2020).To calculate functional connectivity between differ-
ent brain regions, Pearson correlation coefficients were calculated by first calculating
the global baseline i.e., by averaging HBO values for the last 2 minutes of the 3-minute
rest period provided at the beginning of the task, (Tyagi et al., 2021). Followed by
the calculation of peak activation for every trial within each phase for each channel
(Tyagi et al., 2021). Once peak activation was calculated for each channel, 2s HbO val-
ues around the peak were averaged and subtracted from the global baseline, resulting
in ∆HBO (Zhu et al., 2020). Followed by averaging each ∆HBO according to each
ROI (Tyagi et al., 2021). Thus, resulting in six different ∆HbO values according to
each ROI for each participant for each phase. Pearson correlations were transformed
into a Fisher z-score to determine the strength of connectivity between different brain
regions (Rhee & Mehta, 2018). Followed by replacing any value between −0.4 and
+0.4 by 0 to avoid the possibility of false detection of the existence of connectivity
between different brain regions (Rhee & Mehta, 2018).

Raw ECG signal was preprocessed to filter out motion artifacts and collect R-peaks
via the peak detection algorithm. Time between successive R-R peaks (interbeat in-
terval), was then calculated (Karthikeyan, Smoot, & Mehta, 2021). Low frequency
(LF) and high frequency (HF) features were extracted to detect variations in sym-
pathetic and parasympathetic activation (Iizuka, Ohiwa, Atomi, Shimizu, & Atomi,
2020; Melo, Nascimento, & Takase, 2017; Tran, Wijesuriya, Tarvainen, Karjalainen,
& Craig, 2009). Root mean square of successive differences (RMSSD) and low-to-high
frequency (LF/HF) were extracted to assess cognitive load (Tjolleng et al., 2017).

4.6. Statistical Analyses

For statistical analysis, fNIRS and HRV biosignals were divided into 2 phases (Train-
ing and Evaluation). Based on the adaptation model, participants were labeled as
low and high performers for each AR interaction. As such, participants were placed
into one of two training groups for the poking and raycasting tasks: low performer and
high performer. All participants, irrespective of their group assignment also completed
evaluation tasks. Three major statistical analyses were performed: (1) To test the hy-
pothesis that the adaptation model successfully identified low from high performers,
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Mann-Whitney U tests were performed on the performance metric (i.e., median time
to complete) during the training tasks between the two groups; (2) To uncover dif-
ferences in the learning processes between low and high performers, Mann-Whitney
U tests were performed on the neural (activation and functional connectivity), phys-
iological (RMSSD, LF/HF ratio, AvgHR, LF, HF), and subjective responses (ratings
of workload, cognitive load theory, and user engagement) during the training tasks;
(3) To assess whether the adaptation was effective, linear mixed-effect models were
employed to test the effects of group (low vs. high performers) and task (training
vs. evaluation) on the performance data, with participants serving as random effects
to account for individual variability (Bates, Mächler, Bolker, & Walker, 2014); and
4) to assess if the adaptation impacted neurophysiological and perceived load, Mann-
Whitney U tests were performed on the neural, physiological, and subjective responses
during the evaluation tasks.

5. Phase II Study - Results

5.1. Performance of the Adaptation Model

[Figure 5 here]
Of the twenty new participants who completed the training tasks, thirteen were

classified as low performers in at least one of the poking or raycasting interactions.
Amongst them, eight were classified as low performers in both interaction types, while
three were low performers in poking only, and two were low performers in raycasting
only.

[Table 1 here]
Poking Interaction: During the training task, high performers exhibited significantly

shorter median time to complete than low performers (p < 0.0001; η2 = 0.96 ). They
were 29.76% quicker than the low performers, with an average value of 1.01 s for the
median completion time compared to low performers’ 1.44 s (Figure 5 (left column)).
They were also more consistent with an average RMS value of 0.09 s compared to 0.28
s for low performers.

The results obtained from the linear mixed-effects model showed significant task
(F (1, 18) = 15.895, p < 0.001,η2 = 0.47) and group (F (1, 18) = 27.229, p < 0.001,η2 =
0.60) main effects, where longer median completion times were observed during train-
ing for high (9.52% longer) and low performers (29.12% longer) when compared to
evaluation. The task x group interaction was also found significant (F (1, 18) = 5.238,
p = 0.034,η2 = 0.23), where the low performers showed significantly higher median
completion times than high performers, however, this was only found in the training
task. In the evaluation task, comparable performance was observed between groups
(Figure 5 (left column)). Consistency could not be compared in the evaluation stage
owing to the reduced number of trials (n = 3).

Raycasting Interaction: High performers were significantly quicker (41.38%; p =
0.001; η2 = 1.0 ) than low performers in the training task with an average median
completion time of 2.04 s compared to 3.48 s (Figure 5 (right)). High performers
were also more consistent with an average RMSE value of 0.26 s versus 0.85 s for
low-performers.

The linear mixed-effects model results showed significant task (F (1, 18) = 47.107,
p < 0.001,η2 = 0.72) and group (F (1, 18) = 33.180, p < 0.001,η2 = 0.65) main ef-
fects, where similar to the poking interaction, longer median completion times were
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observed during training for high (18.01% longer) and low performers (56.22% longer)
when compared to evaluation. The task x group interaction was also found significant
(F (1, 18) = 17.143, p < 0.001,η2 = 0.49), where the low performers showed signif-
icantly higher median completion times than high performers in the training task,
however, comparable performance was observed between groups during the evaluation
task (Figure 5 (right column)).

5.2. Functional Connectivity

[Figure 6 here]
For poking, compared to low performers, high performers exhibited greater connec-

tivity strengths across FEF/CG-RPMC (p = 0.01), LPMC-RPMC (p = 0.015), and
LPMC-RM1 (p = 0.014) during training . During evaluation, functional connectivity
between different brain regions was found to be comparable across both groups (all
p > 0.154), except for FEF/CG-SMA (p = 0.028), where high performers exhibited
greater connectivity than low performers (Figure 6 (g)).

For raycasting, high performers exhibited stronger functional connectivity across
FEF/CG-SMA (p = 0.03), FEF/CG-RPMC (p = 0.049), and FEF/CG-LM1 (p =
0.024) during training . During evaluation, functional connectivity between FEF/CG-
LPMC (p = 0.013), FEF/CG-LM1 (p = 0.011), and LPMC-LM1 (p = 0.023) was
observed to be stronger among high performers compared to low performers (Fig-
ure 7g).

5.3. Neural Activation

[Figure 7 here]
For poking ( Figure 6 a-f), both low and high performers exhibited comparable

brain activation levels across the six ROIs (all p > 0.277) during the training phase.
In the evaluation phase, low performers exhibited greater activation in the FEF/CG
region than the high performers, though this was marginal (p = 0.07), while no other
differences were observed in other ROIs (all p > 0.178).

For raycasting ( Figure 7 a-f), high performers exhibited greater activation in the
RM1 region than the low performers (p = 0.011) during the training phase, while
no other differences were observed in other ROIs (all p > 0.26). In the evaluation
phase, low performers exhibited greater activation in the FEF/CG region than the
high performers (p = 0.021) and a marginal increase in the SMA (p = 0.075), while
no other differences were observed in other ROIs (all p > 0.25).

5.4. Heart Rate Variability

[Table 2 here]
For poking, RMSSD was significantly lower in the high performers than the low

performers (p = 0.043) during training, while no other HR/V features showed any
group differences (all p > 0.122). HR/V features were found to be comparable across
groups during the evaluation phase (all p > 0.083)(Figure 2 HR/V row).

For raycasting, no group differences were seen across any HR/V features during
training or evaluation (all p > 0.243).
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5.5. Subjective Responses

[Figure 8 here]
For poking interaction, no group differences were seen across any NASA TLX sub-

scales during training or evaluation (all p > 0.283). Both groups reported comparable
scores across all subscales of the cognitive load theory and user engagement scale
during training and evaluation (all p > 0.091) (Figure 8 top row).

For raycasting, low performers reported higher demands across mental (p = 0.058),
performance (p = 0.058), and frustration (p = 0.049) sub-scales than low performers
during training ( Figure 8 denoted with ∗). However, during evaluation, group dif-
ferences were not found significant on any NASA TLX sub-scale (all p > 0.1). Both
groups reported comparable scores across all subscales of the cognitive load theory
and user engagement scale during training and evaluation (all p > 0.161) (Figure 2
UES and CLT rows).

6. Limitations

Our adaptation models were trained using the temporal performance data from twenty-
seven novice participants. While the sample size is relatively small compared to the
data used to train large scale machine learning models, our choice of the unsupervised
k-means clustering technique (Saxena et al., 2017), with a small and known number of
clusters (k = 2 for low and high performers) performed well on new participants. We
showed the effectiveness of the models in our Phase II study, where participants clas-
sified by the model as high and low performers showed significant difference in their
performance metric as well as differences in their neuroergonomic patterns (functional
connectivity and neural activation). Further studies, with a larger number of partic-
ipants, can be conducted using the insights from our current work, to build more
robust adaptation models. Additionally, while we did not consider any individual or
group differences (such as gender, background, etc.) between participants in training
our models, future studies could incorporate these differences into the development of
more personalized adaptation models. Recognizing that individual differences (owing
to user-specific learning processes, their motoric interaction quality, etc.) may impact
model evaluation, we incorporated participants as a random effect in the linear mixed
model analyses performed for the Phase II study.

Another limitation in our study was our inability to compute consistency of users in
the Phase II evaluation tasks owing to the reduced number of trials (n = 3). Our choice
for the reduced evaluation trials was to prevent fatigue in users, that was reported by
some participants during their last couple of training trials in the Phase I study.
However, based on our Phase II subjective analysis that showed no significant changes
in cognitive loads and user engagement after additional training, further studies can
be conducted with more number of evaluation trials to give us a better understanding
of the change in consistency between the training and evaluation tasks across low and
high-performing users. We would also like to note here that in our Phase-I study, we
had a fixed order for the training tasks (i.e., raycasting after poking) which might have
contributed to the fatigue issues in some users. We rectified this in our Phase-II study
where the order of tasks was counterbalanced across the study sample. Further studies
can use the counter-balanced approach during both the training and testing phases.

We also observed limitations in our HRV analysis, where, due to the short period
of the unit interactions in our selection task (i.e., pressing a button), it was difficult
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to obtain stable heart rate and perform ultra short analysis for the short duration.
This prevented us from observing many meaningful differences in heart rate variability
between low and high performers. Future studies might have to utilize HRV analysis
primarily for longer interaction techniques (e.g., scrolling or moving).

7. Discussion

Our primary focus in this work lies in the use of AR/VR systems as a training tool. In
this specific context, our studies reveal a fundamental conceptual gap across how users
perceive and learn unit (basic) interactions in AR/VR, how those interactions are de-
signed, and how visuo-motor behaviour is mapped to user efficacy. For instance, it was
already known that raycasting is complex from a visuo-motor perspective (Argelaguet
& Andujar, 2013). Work by Kopper et al. (Kopper et al., 2010) showed that the motor
behavior model for raycasting (or distal pointing), unlike its 2D counterpart, follows a
non-linear (quadratic) relationship between task difficulty and angular target size in
contrast to Fitt’s law (linear growth in difficulty with distance).

From the neuroergonomics perspective, increased connectivity between brain re-
gions, i.e., functional integration, has shown to be associated with efficient neural
strategies typically adopted with expertise development, while increased activation of
select brain regions, i.e., functional specialization, implicates increased requirements
of cognitive resources to maintain performance (Tyagi et al., 2021). In this respect, our
work offers a multi-dimensional metric of performance (what happened at the hand)
that is supported by neuroergonomic data (what happened in the brain). Specifically,
we show that the difference in motor strategies is also accompanied by quantifiable
differences in neural strategies across the two interactions. Below we discuss the im-
plications of our study within this broader context.

7.1. Training with AR — What is the user learning?

“Context is everything” is often used as an underlying adage for evaluating user in-
teractions in AR/VR/MR interfaces focused on training and adaptation. As a result,
the design of the training tasks and the metrics to evaluate user performance in those
tasks are naturally considered as the key factors that influence the development of
adaptive training (Kelley, 1969).

Recent studies that have employed adaptive AR-based training systems (G. Huang
et al., 2021; Westerfield et al., 2015) mainly focus on training outcomes that are
governed by the training context, e.g., medical tasks or machine tasks, and thereby
focus on metrics such as task completion speed or errors. This can confound key
usability metrics for fielded AR applications (Dwivedi et al., 2022). For instance, notion
of completion time is dependent on how the task is defined in the context of the
application rather than the unit action taken by the users to reach and interact with
(touch, click, or point, etc.) with the virtual object. Similarly, the notion of accuracy
and the measurement of “success” is also completely contextual (e.g. did the welding
happen properly? vs. did the user reach the target spot within a certain positional
and orientational threshold? ). As a result, the user’s prior psychomotor capabilities
to effectively perform the AR-based interactions were either not taken into account or
controlled for by offering structured training.

In principle, our work does not lead to a disagreement with contextual investigation
of AR interactions. However, our studies call for taking a step back to re-consider

14



what it means for a user to be a learner or an expert in a real-world task (say triage in
emergency response) versus a learner or an expert in using AR as a tool for training.
Specifically, our psychomotor and neuroergonomic analyses, when taken in conjunc-
tion, offer key insights that could be instrumental in developing personalized feedback
and adaptation strategies for AR-based training. For instance, while the low perform-
ers improved in their performance after additional training, they still took longer to
complete than the high performers. For poking, which is the simpler of the two in-
teractions we considered, the neural activation and connectivity patterns (i.e., higher
frontal eye field activation and its lack of connectivity with the supplementary motor
area) in low performers indicate that their visual attention and visuomotor search
efficiencies were still subpar to the high performers (Gitelman, Parrish, Friston, &
Mesulam, 2002). This was more evident with raycasting or distal pointing, wherein
high performers maintained strong connectivity between visual attention and motor
function regions that low performers were unable to match even after additional trials.

While our bi-variate performance metric was useful in training adaptation models
for both poking and raycasting interactions, we observed some critical differences be-
tween the two interactions. The raycasting adaptation model labeled over half (55%)
of Phase I participants as low performers, while the poking adaptation model labeled
only one-third as low performers. This suggested that more users experienced the ray-
casting interaction as comparatively harder to learn. The observation was subsequently
supported through user perceptions of workload during Phase II, where low-performing
participants reported significantly higher mental demand and frustration than high-
performing users for the raycasting interactions, whereas no significant difference was
observed for poking Figure 8.

7.2. Multi-dimensional Metrics in AR — How to assess learning?

The characterization of learning and its relation with AR-based interaction evaluation
and design has largely relied on a bag-of-metrics approach (i.e. multiple measures such
as completion time, accuracy, etc. taken individually). In contrast, our choice to model
user performance (phase I) as a joint (bi-variate) measure and especially the inclusion
of consistency reflects our focus on characterizing users’ expertise in and learning of
the AR itself. Even though this seems to be a reasonable (if not an obvious) choice, our
studies strongly point to a need for re-visiting the metrics for assessing user efficacy
in AR-based interactions in the form of multi-dimensional metrics.

This need for multi-dimensional metrics is also informed through literature on active
learning. As an example, the time variable provided insights into the users’ instanta-
neous performance, while the consistency variable provided insights into the learning
behavior, where performance variability indicated active learning (Sher et al., 2020;
Wu et al., 2014).

The key evidence that multi-dimensionality could be an important step for future
AR-systems comes from the neuroergonimcs perspective. Specifically, when we com-
pared high and low performers, the low performers exhibited long time to complete
during the training phase and this was accompanied by weaker functional brain con-
nectivity between the frontal eye field region and left/right premotor cortex, as well
as between left and right premotor cortex ( Figure 6(g), Figure 7(g)). Interestingly,
despite differences in training performances, neural activation patterns of each of the
regions of interest in the frontal and motor areas were largely comparable between
the two groups. This implies distinct neural strategies adopted by high performers who
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exhibited quicker completion times during the training phase, which signaled efficient
brain network integration, rather than functional specialization (Tyagi et al., 2021),
between regions that regulate visuospatial attention and motor preparation (Simon et
al., 2002). That the bi-variate performance metric was able to differentiate between
users who adopted distinctly different neural strategies further strengthens the utility
of the metric.

While there is ongoing research focused on improving mid-air interactions through
the use of tangible interfaces (H.-M. Huang, Huang, & Cheng, 2021; Nizam et al.,
2018), their widespread adoption in fielded AR applications is still lacking (Masood
& Egger, 2019). This raises an unanswered question that likely impacts evaluations
of fielded AR applications — should performance metrics during task performance
and/or training on AR skills be interaction-specific? For example, object selection
using raycasting interaction requires significantly greater hand-eye coordination than
poking, as the objects are away from the user and can occlude one another (Herndon,
Van Dam, & Gleicher, 1994). We see this as an immense opportunity for establishing
a richer metric space that includes other modalities such as gaze-related metrics to
capture to understand how different users learn complex AR interactions (Argelaguet
& Andujar, 2009; Wolf, Lohmeyer, Holz, & Meboldt, 2021). This may particularly
benefit the development of new interaction-specific learning assessment and adaptation
models for AR interactions that take place outside the user’s reach (Ye et al., 2022).

7.3. Adaptation Strategies in AR — Who, how, and how much?

The choice of a bi-variate (time+consistency) performance space in combination with
cluster analysis worked successfully toward identifying users in need for adaptation.
This is also supported by the neuroergonomics data. Specifically, the high performers
were significantly quicker and more consistent in their training tasks compared to low
performers, signifying that low performers were still actively learning at the end of
their training task. As a result, the additional training provided to the low perform-
ers contributed to significant time-based improvements during their evaluation tasks.
Having said this, we were concerned that enforcing additional repetitions as a means
for adaptation might add to their physical and cognitive loads. To our surprise, this
was not the case. Interestingly, perceived workload, cognitive load elements (i.e., in-
trinsic, germane, and extraneous load), and user engagement ratings were comparable
between high and low performers during the evaluation task, indicating that the ad-
ditional training did not additionally burden low performers. This observation further
supported our bi-variate performance metric that identified actively learning users who
were more accepting of additional trials.

Note that while the additional trials helped low performers improve their median
completion times significantly during the evaluation tasks, they were still slower com-
pared to the high performers (Figure 5). A possible reason for this difference could be
our adaptation strategy of providing a fixed number of similar trials to all low per-
formers. Prior research on motor learning has demonstrated that variable repetition
on consecutive training trials enhances the process of skill learning when compared to
practice on similar trials (Vleugels, Swinnen, & Hardwick, 2020), such as that expe-
rienced by users during adaptation in the present study. However, the current results
indicate that participants’ performance may plateau after a number of repetitions,
after which additional repetitions may not help. For instance, high performers did not
see the same percentage of improvement in their evaluation tasks compared to the low
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performers (Figure 5). An alternative approach for adaptive training, could poten-
tially be to embrace variable training strategies (Bonney, Jelsma, Ferguson, & Smits-
Engelsman, 2017), which focus on introducing contextual interference by modifying
stimuli information while keeping the repetitions consistent. However, the impacts of
variable training paradigms in AR require additional investigations as they have been
shown to increase cognitive load (Guadagnoli & Lee, 2004). With more complex AR
interactions, such as raycasting, trade-offs between adaptation strategies (e.g., vari-
able training) and user cognitive load need to be fully contemplated, as these can
impact perceived usefulness, usability, and subsequent acceptance of adaptive training
systems (Dwivedi et al., 2022).

Another perspective towards adaptive training strategies would be to take a flexible
approach towards clustering and classifying users. In our work, we took a binary ap-
proach of classifying users as low and high performers to maintain uniformity across
poking and raycasting interactions. However, for a more interaction-specific classifica-
tion, the number of clusters can be dynamically chosen (Shafeeq & Hareesha, 2012),
that might generate clusters with specific characteristics (e.g., a cluster categorizing
dominantly inconsistent users) which can then be used to provide more personal-
ized training (e.g., more trials to improve consistency). For applications that involve
complex interactions requiring higher cognitive and physical demands, such as ER and
surgical training (Nunes, Lucas, Simões-Marques, & Correia, 2018; Vávra et al., 2017),
it may be necessary to consider multi-dimensional metrics that integrate performance
and neurophysiological measures. In such applications, methods like hierarchical and
grid-based clustering algorithms (Saxena et al., 2017) can better characterize the high-
dimensional modalities, thereby, providing opportunities for more dynamic adaptation
strategies.

8. Conclusion

In this work, we took a two-phase study approach toward training users in the basic
AR-interactions. First, we identified a bi-variate performance metric and developed
adaptation models to identify users who would need additional training. Next, we
tested the performance of these models and carried out neuroergonomic evaluations
to understand their effects on the users’ neurophysiological processes. Through our
Phase-I study, we showed the successful use of our bi-variate performance metric,
derived from time and consistency, in developing adaptation models that clustered
users into low and high-performing groups for each of the interaction types. In Phase-
II, we tested these models on new users to identify the low performers. Given that
the focus of this research was primarily to identify users who needed adaptation, the
study adopted a basic adaptation strategy of providing additional repetitions, shown
to be a hallmark characteristic of expertise development (Gupta & Cohen, 2002).
However, by adopting a neuroergonomics perspective, i.e., examining what happened
in the brain, this study was able to capture the different neural strategies exhibited by
low and high-performing users, which revealed (for the first time) key information and
spatial processing characteristics of AR interactions that can guide the development of
novel paradigms for personalized training in AR. We believe integrating psychomotor
and neuroergonomic approaches offers a rich research platform for AR/VR interfaces
focused on providing visual cues or guides to support visual attention and facilitate
motor preparation.
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Poking Raycasting
p-value η2 p-value η2

High vs. Low
Performers

Training <0.0001 0.96 0.001 1

Evaluation 0.04 0.54 0.031 0.58
Table 1. Significant differences in median completion times between high- and low-performing groups during

Training and Evaluation tasks for Phase-II.

Poking M(SD) Raycasting M(SD)
Training Evaluation Training Evaluation

HR/V

Mean HR (beats/minute) 83.33 (9.38) 83.17 (8.43) 87.58 (9.15) 84.35 (14.22)
LF/HF ratio 24.89 (9.12) 27.37 (15.39) 22.9 (9.04) 26.43 (12.32)
RMSSD (ms) 5.24∗(3.57) 4.84 (5.58) 7.19 (6.07) 4.63 (3.58)

LF (Hz) 805.6 (714.4) 1100.77 (1987.71) 1234.55 (1925.52) 699.91 (661.63)
HF (Hz) 190.52 (159.33) 467.19 (1011.52) 178.34 (130.89) 241.68 (293.67)

UES
(min (1) – max (5))

Focused attention 2.84 (0.76) 3.17 (0.94) 2.84 (0.76) 3.17 (0.94)
Perceived usability 3.73 (0.62) 3.93 (0.87) 3.73 (0.62) 3.93 (0.87)

Aesthetics 2.73 (0.52) 2.58 (0.76) 2.73 (0.52) 2.58 (0.76)
Reward factor 2.27 (0.62) 2.03 (0.89) 2.27 (0.62) 2.03 (0.89)

CLT
(min (1) – max (7))

Intrinsic load 2.6 (0.83) 2.55 (1.08) 2.6 (0.83) 2.55 (1.05)
Germane load 4.92 (1.27) 4.78 (1.85) 4.92 (1.27) 4.67(1.85)

Extraneous load 2.88 (0.79) 2.69 (0.57) 2.88 (0.79) 2.7 (0.55)

Table 2. Mean (SD) values during Training and Evaluation of heart rate variability (HRV), User Engagement
Scale (UES), and Cognitive Load Theory (CLT) responses across all users for Phase-II. * denotes significant

differences between low- and high-performing groups.
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Figure 1. Phase I Study Workflow: Twenty-seven participants started with a (a) Training Task comprising
of 8 trials of sequentially selecting buttons using the poking and raycasting interactions. (b) The bi-variate

performance metric was used to compute the time (overall median completion time) and consistency (RMSE)

values for each user. (c) Using the data from the twenty-seven participants, we trained adaptations models for
both the interaction types (only poking show in figure) using the k -means clustering algorithm. We obtained

clusters for low (white circles) and high (black circles) performing users.

Figure 2. Training results of the poking (left) and raycasting (right) adaptation models using the k -means

clustering algorithm. Twenty-seven participants from Phase-I study were clustered into low (white circles) and
high (black circles) performing groups, with the cluster centroids marked in red diamond markers. Nine and

fifteen participants were labeled as low performers in the poking and raycasting interactions respectively.

Figure 3. a) Devices used during the Phase II study, where participants performed selection tasks in aug-
mented reality using different interaction techniques. The devices included are the: functional Near-Infrared
Spectroscopy device (NIRSport2, NIRx Medical Technologies LLC,NY,USA) to study functional connectivity

and neural activation(top), an Augmented Reality HMD (HoloLens2, Microsoft, USA) to perform the AR-based
task (middle) and, an Actiheart Device (Actiheart5, CamNTech Inc.,UK) that recorded electrocardiogram sig-

nals to quantify physiological load (bottom) b) fNIRS probe montage highlighting the sensors (pink circle) and
detectors (green circle) are connected by solid black lines indicating the channels
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Figure 4. Phase II Study: Participants were equipped with bioinstrumentation and were administered a 3-

minute baseline. Next, they completed a training task, consisting of six trials each of poking and raycasting
interactions in AR. The adaptation model was run on their temporal performance data to classify them either

as low or high performers. Low performers completed three additional trials of poking and/or raycasting

interactions (based on the model determination). All participants then completed an evaluation task consisting
of three trials in both interaction types. Subjective surveys were administered after each interaction type and

after each type of task.

Figure 5. Comparison of time variables across low (white) and high performing (black) participants during
the training and evaluation tasks for poking (left) and raycasting (right) interactions (mean(SE)) for Phase-

II. In both interaction types, high performers were significantly quicker than low performers in the training

task (p < 0.05). Results from the linear mixed-effects model showed significant task and group (low vs. high)
main effects (p < 0.05) as well as significant interaction effect (p < 0.05) for both the poking and raycasting

interactions.
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Figure 6. (a-f) Brain Activation (mean(SE)) of low (white columns) and high (black columns) performers
during poking interactions across different regions of interest (orange highlights), * denotes significant differ-

ences between groups (p < 0.05); While brain activation levels were comparable between groups during the

training phase, low performers exhibited higher activation in frontal eye field (FEF/CG) region during the eval-
uation phase. (g) Group differences in functional connectivity strengths during training (top) and evaluation

(bottom) phases (orange lines denote significantly (p < 0.05 stronger connections in high performers compared
to low performers). High performers exhibited greater functional connectivity between brain regions than low

performers during training, indicating higher neural efficiency. The adaptation trials enhanced functional con-

nectivity in low performers during evaluation, with both groups exhibiting nearly comparable connectivity
patterns.

Figure 7. (a-f) Brain Activation (mean(SE)) of low (white) and high (black) performers during raycasting
interactions across different regions of interest (orange highlights), * denotes significant differences between

groups (p < 0.05); brain activation levels for the right motor cortex was higher in the high performers, however
low performers exhibited higher activation in frontal eye field (FEF/CG) and supplementary motor (SMA)

regions during the evaluation phase. (g) Group differences in functional connectivity strengths during training

(top) and evaluation (bottom) phases (orange lines denote significantly (p < 0.05 stronger connections in high
performers compared to low performers). High performers exhibited greater functional connectivity between
brain regions than low performers during training, indicating higher neural efficiency. While the adaptation

trials improved functional connectivity in low performers during evaluation, they still exhibited weaker con-
nections than high performers during evaluation.
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Figure 8. Mean (SE) ratings on the NASA TLX subscores for Poking (top row) and Raycasting (bottom row)
for low (white columns) and high (black columns) performers during the training and evaluation phases of the

Phase-II study; * denotes significant differences between groups (p < 0.05). While perceived workload across all

subscores were comparable between low and high performers during training and evaluation phases of poking
(top), low performers reported greater perceptions of mental demand, frustration, and poorer performance than

high performers during training on the raycasting interactions (bottom). The adaptation trials successfully

mitigated the perceptions of these demands between groups during evaluation.
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Figure Captions:

• Figure 1 - Phase I Study Workflow: Twenty-seven participants started with a
(a) Training Task comprising of 8 trials of sequentially selecting buttons using
the poking and raycasting interactions. (b) The bi-variate performance metric
was used to compute the time (overall median completion time) and consistency
(RMSE) values for each user. (c) Using the data from the twenty-seven partici-
pants, we trained adaptations models for both the interaction types (only poking
show in figure) using the k -means clustering algorithm. We obtained clusters for
low (white circles) and high (black circles) performing users.

• Figure 2 - Training results of the poking (left) and raycasting (right) adaptation
models using the k -means clustering algorithm. Twenty-seven participants from
Phase-I study were clustered into low (white circles) and high (black circles)
performing groups, with the cluster centroids marked in red diamond markers.
Nine and fifteen participants were labeled as low performers in the poking and
raycasting interactions respectively.

• Figure 3 - a) Devices used during the Phase II study, where participants per-
formed selection tasks in augmented reality using different interaction tech-
niques. The devices included are the: functional Near-Infrared Spectroscopy
device (NIRSport2, NIRx Medical Technologies LLC,NY,USA) to study func-
tional connectivity and neural activation(top), an Augmented Reality HMD
(HoloLens2, Microsoft, USA) to perform the AR-based task (middle) and, an
Actiheart Device (Actiheart5, CamNTech Inc.,UK) that recorded electrocardio-
gram signals to quantify physiological load (bottom) b) fNIRS probe montage
highlighting the sensors (pink circle) and detectors (green circle) are connected
by solid black lines indicating the channels

• Figure 4 - Phase II Study: Participants were equipped with bioinstrumentation
and were administered a 3-minute baseline. Next, they completed a training
task, consisting of six trials each of poking and raycasting interactions in AR.
The adaptation model was run on their temporal performance data to classify
them either as low or high performers. Low performers completed three addi-
tional trials of poking and/or raycasting interactions (based on the model de-
termination). All participants then completed an evaluation task consisting of
three trials in both interaction types. Subjective surveys were administered after
each interaction type and after each type of task.

• Figure 5 - Comparison of time variables across low (white) and high performing
(black) participants during the training and evaluation tasks for poking (left)
and raycasting (right) interactions (mean(SE)) for Phase-II. In both interac-
tion types, high performers were significantly quicker than low performers in the
training task (p < 0.05). Low performers were significantly quicker in the eval-
uation after receiving additional training. Results from the linear mixed-effects
model showed significant task and group (low vs. high) main effects (p < 0.05) as
well as significant interaction effect (p < 0.05) for both the poking and raycasting
interactions.

• Figure 6 - (a-f) Brain Activation (mean(SE)) of low (white columns) and high
(black columns) performers during poking interactions across different regions
of interest (orange highlights), * denotes significant differences between groups
(p < 0.05); While brain activation levels were comparable between groups dur-
ing the training phase, low performers exhibited higher activation in frontal eye
field (FEF/CG) region during the evaluation phase. (g) Group differences in
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functional connectivity strengths during training (top) and evaluation (bottom)
phases (orange lines denote significantly (p < 0.05 stronger connections in high
performers compared to low performers). High performers exhibited greater func-
tional connectivity between brain regions than low performers during training,
indicating higher neural efficiency. The adaptation trials enhanced functional
connectivity in low performers during evaluation, with both groups exhibiting
nearly comparable connectivity patterns.

• Figure 7 - (a-f) Brain Activation (mean(SE)) of low (white) and high (black) per-
formers during raycasting interactions across different regions of interest (orange
highlights), * denotes significant differences between groups (p < 0.05); brain ac-
tivation levels for the right motor cortex was higher in the high performers, how-
ever low performers exhibited higher activation in frontal eye field (FEF/CG)
and supplementary motor (SMA) regions during the evaluation phase. (g) Group
differences in functional connectivity strengths during training (top) and eval-
uation (bottom) phases (orange lines denote significantly (p < 0.05 stronger
connections in high performers compared to low performers). High performers
exhibited greater functional connectivity between brain regions than low per-
formers during training, indicating higher neural efficiency. While the adapta-
tion trials improved functional connectivity in low performers during evaluation,
they still exhibited weaker connections than high performers during evaluation.

• Figure 8 - Mean (SE) ratings on the NASA TLX subscores for Poking (top row)
and Raycasting (bottom row) for low (white columns) and high (black columns)
performers during the training and evaluation phases of the Phase-II study; * de-
notes significant differences between groups (p < 0.05). While perceived workload
across all subscores were comparable between low and high performers during
training and evaluation phases of poking (top), low performers reported greater
perceptions of mental demand, frustration, and poorer performance than high
performers during training on the raycasting interactions (bottom). The adap-
tation trials successfully mitigated the perceptions of these demands between
groups during evaluation.
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