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The generalizability of a convolutional encoder-decoder
based model in predicting aerodynamic flow field across vari-
ous flow regimes and geometric variation is assessed. A rich
master dataset consisting of 11,000+ simulations including
cambered, uncambered, thin and thick airfoils simulated at
varying angles of attack is generated. The various Mach
and Reynolds number (Re) chosen allows analysis across
compressible, incompressible, low and high Re flow regimes.
Multiple studies are carried out with the model trained on
datasets that are categorized based on the above parameters.
In each study, the loss of prediction accuracy by training the
model on a larger dataset (generalizability), versus a smaller
categorically sorted dataset, is evaluated. Largely disparate
flow features across the Re range lead to a 25.56% loss, while
the generalization across Mach range led to an average of
23.95% loss. However, flow-field changes induced due to
geometric variation exhibited a better generalization poten-
tial, through an increased accuracy of 12.4%.The encoder-
decoder architecture allows extraction of relevant geometric
features from largely different geometries (geometric general-
ization) providing a better out-of-sample prediction accuracy
in comparison to physics-based generalization. It is shown
that, through user-informed choice of training data (removal
of geometrically similar samples), computational costs in-
curred in generating training data can be reduced. This is
important for the application of such methods in the design op-
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timization of platforms and components that require analysis

of the fluid flows.

1 Introduction

Recently, there has been an increased interest towards the
application of data-driven techniques to fluidic problems that
previously required a rigorous solution of complex Partial
Differential Equations either computationally or empirically.
Data-driven techniques have the potential to revolutionize the
field of fluid mechanics by cutting down the computation time
by several orders of magnitude. This has led to these methods
making their way into the design space exploration, optimiza-
tion and control problems at an increasing pace [1]. However
the question of generalizability, specifically, in the context
of fluidic prediction for applied design of aerospace systems,
remains unanswered. This domain is particularly challeng-
ing with respect to geometry (e.g. bluff bodies such as the
Apollo capsules to streamlined fighter aircraft) and the flow
physics (e.g. Mach and Reynolds numbers that encompass
incompressible to reacting flows). In this paper, we present
a detailed study of the generalizability of convolutional neu-
ral networks, specifically an encoder-decoder architecture, to
these two broad design variables: geometry and flow physics.

This research is motivated by the immense success of
deep learning approaches witnessed by the computer-aided
geometric design community in the recent past. However,
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unlike their application to geometric design synthesis [2—4],
the use of data-driven learning, especially neural network
based approaches, to fluids problems is yet to mature toward
full scale application to design synthesis. Even though there is
a considerable effort on statistical and data driven approaches
for flow prediction, significant work needs to be done toward
creating a sound methodology.

1.1 Background

There are two broad classes of data-driven modeling ap-
proaches for fluid-related problems. In the first category,
learning algorithms are used to improve the accuracy of
the lower order mathematical and computational fluid dy-
namics (CFD) models. This includes the use of learning
algorithms to providing better turbulence closure [5-7], im-
proved discretization [8], dimensionality reduction [9] and
data-driven solving and identification of partial differential
equations [10, 11]. These methods use machine learning
techniques to supplement established methods and laws by
improving their accuracy or reducing the computational cost.

The second category of efforts tries to leverage the gen-
eralization capability of the learning algorithms. Such meth-
ods, when trained with sufficiently large pairs of input-output
combinations, can generate the results for out-of-sample in-
put data. Deep learning based models are especially suited
for this type of application as their power to generalize is
established in various image processing applications [12].
Kutz [13] summarizes various approaches of implementing
the Deep Neural Networks to fluid flow problems. One such
special type of Deep Neural Networks (DNN) is the type of
networks that implements the Convolutional operation. These
networks are especially suited for the matrix representations
of the data and have the capability to reduce the trainable
parameters by weights sharing. It is also found that the gener-
alization capability of such networks is better than other types
of DNN [12]. Works found in literature show the application
of this convolution operation to predict flow fields [14-20],
specific flow quantities [21-23], flow initialization [24] and
solving inverse design problems [25,26]. Other DNN based
studies which are more focused on the fluid simulations for
computer graphics applications can be found in [27,28].

Guo et al. [14] initially explored the possibility for study-
ing the low Re flow over complicated car geometries using
just simple shape simulation data. Subsequently, the works
published in [15,16,21,23,25,29, 30] also demonstrated the
potential of using neural networks to learn and generalize
flow field information from training data, that has physical
or geometric parameter diversity. However, most of these
studies focused on capturing the geometric variation. Lee et
al. [30] investigated the out-of-sample performance over Re
number variation for a bluff body flow. Bhatnagar et al. [15]
and Sekar et al. [16] studied the generalization across both
physics and geometry. However, the studies were focused on
a single flow regime based on Re. To make the models more
informed about the underlying physics, Nabian et al. [17]
introduced the physics informed regularization to the CNN
model. The resulting network showed improved accuracy

compared to the studies by Guo et al. [14] on the car flow
prediction problem. However, this addition came at the cost
of an increased computational burden and the requirement
of handcrafting of features or equations. To the best of our
knowledge, generalization of such methods across multiple
flow regimes such as sub-sonic to transonic, incompressible
to compressible, and low to high Re, at the same time having
a considerable geometric variation, has not been investigated
yet. Such generalization capacity, would be of immense util-
ity in the aircraft design process discussed in the previous
section.

1.2 Scientific Motivation, Knowledge Gap and Contri-
bution

The methods described in the previous section have the
potential to reduce the initial design and revision cycles for all
processes that rely on CFD modeling for design. As an exam-
ple, we consider the simulation and trajectory optimization of
commercial and military aerial vehicles, which relies on CFD
for the generation of large parametric databases. Dependant
upon trajectory, such databases typically include integrated
coefficients. However, the analysis of flow features and dis-
tributed field variables over is critical for thermal and acoustic
loads. An example of what a comprehensive database would
encompass at each point is provided by Orchard et al [31].

This CFD process, when performed on the entire geome-
try of vehicle, is computationally expensive and potentially
takes weeks of simulation time [32] just for a single combina-
tion of flow conditions. For an entire database which covers
multiple flow conditions, this process scales up to months.
For such vehicles the physics involved gets increasingly com-
plicated as the flight envelope expands. As Mach number
moves from low subsonic, to transonic, to supersonic and
hypersonic values, modeling must account for aerothermal,
entropy and chemistry based effects. Such modeling is pro-
hibitively resource hungry and precludes the development of
comprehensive databases, thereby necessitating supplements
in the form of expensive flight testing. The development of
such databases using fully resolved and verified CFD data for
canonical geometries is therefore, extremely appealing and
is the primary motivation of this study. With an adequately
sized, verified CFD database for flow over canonical shapes,
a neural network-based model could be instrumental in map-
ping flow conditions and important geometric features onto
complex vehicle geometries which can be reusable for multi-
ple aircraft configurations. Such a similar concept of using
data from previous design projects to aid the approximation of
target domain has been previously looked at from an aircraft
design perspective in the form of transfer learning [33]. With
a potential to reduce the computational costs by at least an
order of magnitude, these methods are worth exploring from
design and synthesis perspective.

As demonstrated by the above studies, efforts in making
the networks more generalizable, rely heavily on the learning
algorithms to pick-up relevant features [14—16,21,29] from
the input and then use them to make meaningful correlations.
In comparison to methods aimed at improving the physics
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based methods like CFD, the research published in explor-
ing the generalization capability of Data-driven Deep Neural
Network (DNN) models appears to be much less understood
in literature. Due to the nascent nature of this application of
learning methods, there is a gap in knowledge pertaining to
their aptness in identifying and translating flow features and
corresponding effects. The overarching goal of this study is
to address some of the palpable and subtle concerns that arise
when a generalization of predictive capability is sought across
physics.

In order to meet this goal, our main objective is to estab-
lish the suitability of a convolutional encoder-decoder model
(hereafter referred to as ‘CNN based model’ or just ‘model’).
While the general area of DNN has several advanced neural
network architectures to offer, the CNN based model has been,
so far, one of the popular models in the machine learning (ML)
community for data-driven flow related predictions [14,15,17].
Especially this model is found to be useful for problems that
encompass geometric variation, as well as changing flow pa-
rameters within same flow physics range. The popularity
is further evident as, with slight modifications to the above
model, researchers [16, 18,20-23] have used it for other flow
prediction tasks, albeit a more geometrically varying data-set.
However, the current literature does not focus on understand-
ing of the failure modes, or comment on the reasons for loss
in accuracy from the perspective of physics. Without under-
standing the impact that data driven modeling methods have
on recognizing, retaining and reproducing flow features that
begin to appear as Mach and Reynolds number change, it
is difficult to conclusively argue their use in sophisticated
aerothermal prediction processes. Hence, the current study
is aimed to investigate the ability of a similar model to cap-
ture multiple physics at the same time. This includes flows
over streamlined bodies (airfoils) that span over incompress-
ible and compressible as well as laminar and turbulent flow
ranges.

When trained using data that has diverse range of features,
CNN encoder decoder structure is known to “blur” informa-
tion in the process of capturing common underlying features
in the data. Well documented cases of generalizability issues
exist [34-36] in the context of computer vision and simple
classification tasks. Extensive research has been conducted
to investigate the effects of batch size [35,37,38], training
methods, algorithms [34,35] and theoretical reasons for cases
in which deep, highly parameterized neural networks demon-
strate some capacity to generalize [39]. However, there is a
lack of consensus in terms of the traits of a good generaliz-
able model [38,40]. The encoder-decoder structure adopted
in this study is similar to the structure seen in autoencoders
which is used in many of these computer vision tasks and
quite recently fluid tasks [14, 15, 17]. To the authors’ knowl-
edge, from a fluidic prediction perspective, where a gener-
alizable model would mean generalizability across several
flow applications/regimes and geometry, there is no standard
benchmark set yet nor has this issue been investigated with
quantitative detail. Additionally, it is not clear how the de-
ficiencies of the deep learning framework expressed in the
literature cited above, would translate to the specific problem

of flow field prediction. Although the current architecture
used in this study relies on a deep encoder-decoder structure,
the multiple outputs of the network (u, v and rho) replicate
a multi-task learning problem and can advantage from the
generalization capabilities of such models [41-43].

In this study, we observe similar concerns when trying
to generalize across flow physics. Specifically, we demon-
strate that when trained across varying geometries for a given
flow regime (as defined by parameters such as the Mach and
Reynolds numbers), the architecture generalizes adequately
well (to an extent that they could be useful in CFD predictions
in some future). However, the same level of generalizability
is not achieved when training the network to learn the varia-
tions in the flow regimes. Furthermore, it is not obvious that
the lack of adequacy in modeling flow regime transitions is
exclusively because of an architecture inherent weaknesses.
This points to a fundamental gap in literature that applies
neural network models to flow problems. To the best of our
knowledge, our effort is the first to (a) expose this gap
explicitly and quantitatively, (b) pin-point specific loop-
holes to avoid when utilizing such models for CFD-driven
design tasks, and (c) demonstrate that regardless of their
weaknesses, this class of architecture can still be utilized
for design exploration if constrained through geometric
variations.

2 Materials and Methods
2.1 CFD Simulations and CFD Database Generation

In this work, the flow simulations are performed using a
commercial StarCCM+ solver. The simulations are performed
using the built-in steady-state compressible RANS, k-omega-
SST model with wall functions for turbulence closure. The
equations are solved using a coupled flow model to solve
the mass, momentum and energy equations simultaneously
using a pseudo-time marching scheme. The air is modelled as
an ideal gas throughout the study. The simulation is carried
out in a 2D setting with far-field boundary conditions at the
boundary and no-slip boundary condition at the airfoil surface.
Each simulation is run for 3000 iterations which either leads to
a statistically steady state or the scaled residuals dropping by
3 orders of magnitude. It is key to note here that, because the
ground truth for the CNN predictions is the CFD simulations
and not the experimental data, the CNN model will not be
able to outperform the CFD data. Moreover, the current study
focuses on investigating the generalization capability only,
and the above level of accuracy of CFD simulations is deemed
to be sufficient to make such comparisons.

Fifty airfoil shapes which encompassed both cambered
and uncambered airfoils were chosen for this study. This cho-
sen database incorporates a variety of low-speed, high-speed,
high-lift, etc. types of airfoils having important aerospace
applications with characteristics similar to systems ranging
from sail-planes to commercial airliners. In terms of vari-
ation in camber and thickness, the database encompasses a
maximum camber variation from 0-8.4% and a maximum
thickness variation of 6-24% (see Appendix for details of the
precise airfoil geometries).
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The simulations for these airfoils are performed at
Reynolds numbers 100, 300, 500, 1000, 1500, 2000, 0.5¢6,
1e6, 1.5e6, 2e6 and 3e6 at Mach numbers of 0.2, 0.3, 0.5
and 0.7. The low Reynolds numbers (Re < 2000) cases for
Mach 0.7 are removed from the simulation dataset as it leads
to unphysical flow conditions due to high viscous heating.
Each airfoil is tested for 6 angles of attack from o« = 0 to
a = 10. An unstructured mesh is generated for each airfoil
geometry with 10 prism layers near the airfoil surface. Each
geometry contains approximately 48,000 cells with a greater
concentration of cells around the airfoil (Figure 1).

The combinations of above-specified parameters lead to
the development of a dataset containing 11,400 simulations.
This complete dataset is referred to as the master dataset here-
after. Such a database was designed in the context of design
of aerospace type fluid system where interpolation techniques
are used to obtain precise pinpoint solutions. At an appropri-
ate level of density, it’s desirable to obtain fairly accurate so-
lutions using simple linear interpolation from such a database.
Neural Network based architectures can differentiate them-
selves as it is possible to obtain a non-linear interpolation [44]
which can offset the need to produce a dense dataset. This is
also required as one needs to factor in the time take to train a
model in addition to the time taken to generate the training
data. The adoptability of learning methods in design domain
will depend on how much information it can extract from a
limited data.

The low Re cases, when simulated at an angle of attack,
are characterized by a larger wake area behind the airfoil as
compared to the high Re cases. The Mach 0.7 cases have
regions in the flow field where the flow accelerates to super-
sonic flow and leads to a shock wave on the low-pressure
side of the airfoil. The cases stated above are a few examples
which elaborate the presence of varying flow features across
the master dataset.

In addition to physically different flow regimes present
in the master dataset, to test the geometric generalizability of
the network, the dataset is also split into cambered and un-
cambered airfoils, as well as some corner and peripheral cases.
The categorization is user-defined and is done specifically
to identify the merit in such classification. This is also to
investigate if a model trained on a smaller set of airfoils is
sufficient to generalize across the entire distribution, and if
not, the penalty incurred in reducing the samples is measured.
A detailed description of the geometrically categorized classes
is provided in the Results section.

2.2 Database for the CNN based model

For each study, an 80-20% split of each class is carried
out for generating the training and test examples whenever the
classes are segregated across physical parameters [45]. For ge-
ometric generalization studies, testing samples are chosen as
few specific airfoils which are then excluded from the training
data. More specific comments on the ways the training and
test data is chosen for such studies is provided in the Results
section where the classes and their results are discussed in
succession to provide better coherence. For the application of
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Fig. 1. Geometry. Left: The 2D control volume for the CFD simu-

lations. Right: Zoomed view indicating the mesh and sampled area
for training the model. (¢ = Chord length of the airfoils)

the CNN based model, the data is sampled from the vicinity
of the airfoil (Figure 1) in the form of a 256x256 Cartesian
grid. The values of mean u and v components of velocity
(components in the x and y direction) and the mean density
are extracted from the simulation data. The extracted data is
normalized across the entire dataset by performing min-max
scaling.

2.3 Convolutional encoder-decoder based model

Convolutional Neural Networks are a special type of
Deep Neural Network specifically made for tasks classify-
ing images. These types of networks, through convolution
operation can compress the matrix form of data allowing
data-compression. A Convolutional Autoencoder (CAE) is
a special type of CNN where this compressed data is re-
constructed to form the input image [46]. In this study, we
use the encoder-decoder structure similar to the one found
in the CAE. We pass the fluid flow parameter information
to the compressed input data which passes through the de-
coder pipeline to produce the 2D flow field (velocity and
density field). Thus the inputs of the model is the airfoil
shape/geometry and the far-field data such as Mach number,
Reynolds number and angle of attack and the output is the
2D flow field which compared to the flow field produced by
the CFD. In the subsequent sections, we refer to this network
structure as CNN based model for simplicity. At some occur-
rences, the word “CNN” is dropped when the context is clear.
The details of the implemented CNN based model are now
discussed.

The Signed Distance Function (SDF) array of the input
airfoil geometry is encoded by the encoder which systemati-
cally picks up the relevant geometric features from the input
geometry while downsizing the array. The final layer of the
encoder is reshaped into a vector, to which a vector contain-
ing the information about the flow variables is concatenated.
The input vector is split equally between the input parameters
(3). The concatenated output is then fed to a fully connected
layer. A shared decoder type of architecture as proposed by
Bhatnagar et al. [15] is followed for decoding the encoded
information and produce u and v velocity components and
density field. The decoding layers consist of transposed con-
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Fig. 2. Convolutional encoder-decoder based model architecture used in the current analysis

volutional layers which work the same as convolutional layers
but in reverse.

An advanced Leaky ReL.U function with & = 0.5 is used
for the activation in each layer. Each convolutional and trans-
posed convolutional layer is followed by a batch normal-
ization layer which normalizes the output of the previous
activation layer [47]. This helps in speeding up the learning
process as batch normalization reduces the covariate shift and
reduces the effects of vanishing/exploding gradients. This
also prevents the network from overfitting the training data
which reduces the need for separate regularization.

2.4 Signed Distance Function

Signed Distance function (SDF) is used to provide the
geometry information to the network. SDF is suitable for the
CNN based framework, and its benefits over the regular binary
representation are outlined in [14]. The SDF is normalized
by dividing the maximum value across the entire data-set.
The airfoil geometry is discretized using a Cartesian grid
wherein all grid cells inside the airfoil are assigned -1 and
those outside are assigned +1 . A Python module is then used
which constructs the SDF for the geometry based on the fast-
marching method [48]. The quality of the curve traced by the
SDF is directly dependent on the resolution of the Cartesian
grid and is one of the limiting factors for making an accurate
representation of the geometry.

2.5 Training of Model and Architecture Variation

The different CNN architectures implemented in this
study, along with their hyper parameters, are mentioned in Ta-
ble 1. In order to account for the large complexity the model
needs to handle in terms of the physics and geometry, a total
of 100 filters were used in each layer in each of the network
utilized. Architectures for CNN1, CNN2 and CNN3 repre-
sents the commonly used encoder decoder structure. Table 1
represents only the encoder side of the network. The decoder
is the same as encoder but in the opposite direction as shown
in Figure 2. For the network with skip connections, the input
from the corresponding layer in the encoder is also fed to the
decoder along with the input coming from the previous decod-

ing layer. The variations in architecture and hyperparameter
settings also resulted in the variation of latent space vector.

CNN2 exhibited lower training and validation loss in
comparison to CNN1 and CNN3. Although CNN4 provided
marginally better training and validation losses, the skip con-
nections led to an additional computational cost. Decreasing
the latent vector size seemed to decrease the accuracy as well
as the computational time due to reduction in the size of fully
connected network (CNN1). However, a more thorough study
is necessary into this in order to conclusively ascertain the ef-
fect of latent vector size. Based on these observations, CNN2
seemed to strike the right balance in terms of computational
cost and accuracy and was utilized as the primary model for
all the further studies.

The network (CNN?2) is trained using a batch size of
32 examples for 150 epochs for each case as the loss curve
flattened beyond 150 epochs (Figure 3). The optimization is
carried out using the RMSprop optimizer. The learning rate is
initiated at 0.001 and is decayed by a factor of 0.1 when the
learning reached a plateau, i.e. the learning stagnated for the
last 5 iterations. The batch normalization layer used, makes
use of the mean and variance for the current batch while com-
puting the training error. However, it uses the running mean
and variance for evaluating the validation dataset. Thus the
validation error is lower than training error as the mean and
variance are different for each batch which is not representa-
tive of the entire dataset. The removal of batch normalization
layers causes the two errors to match more closely (Figure 4).

3 Results and Discussion
3.1 Metric for Comparison

The Mean Absolute Percentage Error (MAPE) metric
was chosen to compare the different studies. This metric
allows comparison of quantities in terms of relative error.
MAPE is made to compute the relative error between the
ground truth CFD results and the flow field generated by the
model.

The proposed CNN based model is evaluated based on
multiple datasets that are sub-sampled from the master dataset.
The MAPE evaluated on the test dataset for each model
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Table 1. CNN architectures with their hyper parameters (Losses are reported for Mach 0.7 predictions)
Layer type CNNI1 CNN2 CNN3 CNN4 (Skip Conn.)
Input 256x256x3 256x256x3 256x256x3 256x256x3
1st Convolution 3x3, 100 3x3, 100 5x5, 100 3x3, 100
2nd Convolution 3x3, 100 3x3, 100 5x5, 100 3x3, 100
3rd Convolution 3x3, 100 3x3, 100 5x5, 100 3x3, 100
4th Convolution 3x3, 100 3x3, 100 3x3, 100
5th Convolution 2x2, 100
Latent Vector 1x400 1x1600 1x1600 1x1600
Input Vector 1x300 1x1200 1x1200 1x1200
Training time 5.56 s/fepoch  17.72 s/fepoch  4.94 s/epoch 18.36 s/epoch
L2 loss - Training 7.59e-4 6.71e-4 8.31e-4 6.64e-4
L2 loss - Validation 6.86e-4 6.00e-4 8.01le-4 6.02e-4
100 100
' '
10° 10°

Fig. 3. Plot showing training and validation losses for a model
trained on Mach 0.7 data

trained using different sub-samples is recorded for relative
comparisons. Whenever an out-of-sample reference in this
study is made, it refers to a sample that is not only absent in
the training data, but is also significantly different from train-
ing data in terms of the geometry/representative flow field
variable (based on the context). In the subsequent sections,
the observations based on such out-of-sample performance
of the models trained on sub-samples of data is discussed in
detail.

3.2 Prediction performance across compressible and in-
compressible flow regimes

To test the model’s ability to fit data which is categorized
based on the compressible/incompressible flow regime, the
master dataset is sub-sampled based on the Mach number.
Individual datasets containing simulations for a single Mach
number are generated which is further split into 80% for
training, and 20% for testing the trained model. Figure 5
summarize the comparison of the predictive performance of

Fig. 4. Plot showing training and validation losses for a model
without batch normalization

Ability of the model to fit a particular set of physics

Predictions on M=0.5
data

Predictions on M=0.2
data

Predictions on M=0.7
data

0.0 0.6 1.2 1.8 2.4 3.0
Mean Absolute Percentage Error (MAPE)

EEN Total HEN u BN v EBN rho|

Fig. 5. Performance of the model at various Mach numbers

the CNN model when trained on these multiple datasets.

Overall, the model delivers an average of 2.16 MAPE on
all Mach numbers (the largest being 2.69). A more detailed

6 Copyright © by ASME



comparison between the 3 studies reveals that the accuracy
of predictions declines as the Mach number of the training
examples increases. The prediction indicates that the model
is unable to track the sharp changes in gradients, which are
prominent in the Mach 0.7 case due to stronger separation
between low and high-velocity regions, as well as the shock
wave located on the low-pressure side of the airfoil. The exact
position and the strength of the shock wave are different for
each airfoil. Moreover, the size of the shock wave is relatively
small when compared to the larger flow field features like
the wake, stagnation and low and high-pressure regions and
hence the model does not accurately capture weak shocks
from the flow field.

The gradient information across the shock wave is con-
verted to a localized gradient which is not always a contrasting
factor in the entire flow field (Figure 6). The weak shock wave
which appears as a sharp discontinuity in the CFD data ap-
pears to be smeared in the CNN predictions (Figure 6). This
suggests that, even when a true matrix of primitive variables
(u, v and rho quantities form CFD) is utilized, the CNN based
model is unable to preserve these sharp gradients. This is
likely due to the relative size of the localized gradient as well
as the filter size and strides taken during the convolution oper-
ation. The fact that the size of such disturbance is quite small
for low transonic Mach numbers, makes it difficult for the
CNN based framework to capture the weak shocks accurately.
Accurate tracking of weak and strong characteristics of this
nature is important for achieving accurate predictions in the
transonic domain. It would however, require additional effort
during the training process, to improve the tracking of such
small disturbances in the context of gradients that exist in the
larger flow field.

3.3 Generalization across physical parameter variation
3.3.1 Mach number variation

To study the generalization across the Mach numbers,
multiple datasets are created. Each of these datasets contained
samples which have the same Mach number as that of the test
cases. However, no sample is exactly the same in the training
and the test dataset. The samples in test and training dataset
varied in other parameters like the Reynolds number, airfoil
shape and the angle of attack. The datasets were progressively
added with training samples of additional Mach numbers apart
from the test Mach number. As an example, for testing the
predictions on Mach 0.7 samples (Figure 7), first, a model
is trained using only the Mach 0.7 training data. After this,
Mach number variation is added (Mach 0.2 and 0.3 examples
in addition to Mach 0.7 ones, etc.) to analyze the ability of
the model to generalize across Mach number variation. The
A MAPE was less than 0.5 when generalization is tested on
Mach 0.7 and Mach 0.2 test samples (Figure 7 and 8). The test
data is kept consistent when evaluating the multiple models
trained in this section. Each model encompasses a greater
Mach number variation (Figure 7 and 8) and they are tested
on 20% of the chosen Mach number’s total samples (20% of
total Mach 0.7 samples for models in Figure 7 and 20% of
total Mach 0.2 samples for models in Figure 8). The out-of-

sample performance for the Mach number is not evaluated,
meaning the training data always consisted the samples which
had Mach number representative of the test data.

It is observed that the flow field is quite similar up to a
Mach number of 0.5. At Mach 0.7, the presence of the shock
wave becomes prominent. Not only does the model fail at
accurately reproducing the shock wave, the addition of Mach
0.7 data to the training data also degrades the performance
for predictions on Mach 0.2 test data. This is because the
model’s parameters are now trained to fit the flow features
of two different types of flow regimes. For Mach < 0.3, the
density field is constant while for Mach 0.5 and 0.7 cases,
significant variations are observed within the density field
due to compressible flow. This implies that the CNN based
framework does not capture the variations in density at higher
Mach numbers (Mach > 0.3) as accurately as it does for the
lower Mach numbers (Mach < 0.3).

Moreover, the addition of more Mach variation outliers to
the training data affects the prediction accuracy for Mach 0.7
more severely than it does for the Mach 0.2 predictions. This
behavior can be attributed to the master dataset being more
biased towards low Mach cases which are devoid of a shock
wave in their flow field. The aggregate MAPE based loss in
accuracy incurred by using a generalized training model is
on an average 23.95% as compared to the model trained on
the specific class of Mach number. Closer inspection of the
flow field for the various Mach numbers shows that except for
the density field, and the presence of shock wave for Mach
0.7 cases, the larger flow field features like the wake region,
stagnation and low/high-pressure regions are similar from a vi-
sual standpoint. Thus, the model appropriately captures these
larger flow field features which have relatively minor variation
for Mach number up to 0.5. To the model, the variation in
physics that appears in the form of shocks and other transonic
flow features is indistinguishable from other visually based
intensity and gradient changes that a CNN type architecture
is designed to extract. Therefore, for generalization to be
successful in this context, an advanced flow feature extraction
methodology is required. Such a methodology should distin-
guish between the above mentioned (shock and wake) flow
features. This result also implies that intelligent sub-sampling
of a large database based on physics will lead to a noteworthy
improvement in prediction accuracy. Alternatively, generation
of a training data set that is guided and reduced by knowledge
of such features, will require less resources while being more
accurate.

3.3.2 Reynolds number variation

To study the generalization across the Reynolds numbers,
multiple datasets are generated, with either low (Re < 2000)
or high (Re > 2000) Reynolds number cases only. A gen-
eralized dataset capturing the entire Reynolds number range
is also generated to make the generalization comparisons.
These models are then tested for predictions on high Re cases.
The dataset is split into two low and high Re simulations.
For evaluation, two high Re sub-samples at different Mach
numbers are chosen. The test data is kept the same for the
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Fig. 6. Flow field predictions for Mach 0.7 case (scaled). Left: Ground truth from the CFD simulation. Center: Predicted flow field from
the model. Right: Absolute error between the ground truth and the CFD simulation. The black boxes highlight the weak shock present in

the flow field (left) and the failure of the CNN based model to capture it appropriately (center).

Predictions on M=0.7 cases
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M=0.2+M=0.3+M=0.5
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Fig. 7. Performance of the model for predictions on Mach 0.7 case

respective Mach numbers, meaning, for testing the predictive
performance on high Re cases at Mach 0.2, models are trained
only using Mach 0.2 data. The variation is therefore limited to
Reynolds number, angle of attack and airfoil geometry. The
training model is varied such that only high Reynolds num-
ber simulations are used for one while for the other, all the

Predictions on M=0.2 cases

Model trained on
M=0.2+M=0.3+M=0.5
data

Model trained on
M=0.2+M=0.3+M=0.5
+M=0.7 data

Model trained on
M=0.2+M=0.3+M=0.7
data

Model trained on
M=0.2+M=0.7 data

Model trained on
M=0.2 data
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Fig. 8. Performance of the model for predictions on Mach 0.2 case

Reynolds numbers pertaining to that specific Mach number
are included in the training data.

The penalty incurred in MAPE by generalizing across
the Reynolds numbers is found to be 25.56%. This is higher
as compared to the previous case where the generalization
was focused to capture the Mach number variation (Figure
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Predictions on High Reynolds number cases
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Fig. 9. Performance of the model for predictions at various
Reynolds numbers

9). This behaviour can be attributed to significantly different
flow features that are dominant in each of these flow regimes
(Figure 10). As the flow field is dominant in one direction, the
wake sizes can be seen explicitly with just the representation
of the u-component. Hence, the v-component and the density
fields are not represented in Figure 10 and 11 while making
the comparisons based on wake sizes.

The low Reynolds number simulations are characterized
by a larger wake with a smoother gradient between the low
and high values. On the other hand, the high Reynolds number
simulations are characterized by relatively smaller wake and
sharper gradient in values (Figure 10). As the flow features are
significantly large (unlike the shock wave) and also widely dif-
ferent from a visual standpoint, training a generalized model
to capture these flow features is found to be difficult. The er-
rors in predictions (MAPE) increases by approximately 25%
for each Mach number whenever a single model was fit to
generalize the Reynolds number variation. The 2D matrix
representation of the data of the standard primitive variables
is not comprehensive in capturing these strong variations. A
higher level representation of the data that accounts for more
physics, could perhaps be used to alleviate this issue. It is
observed that the maximum error in the flow field prediction
is for the u-component of the velocity. Moreover, the regions
of high error in the u-component match closely with the areas
of high vorticity (Figure 11). This suggests that the errors are
high in the regions where vorticity diffusion is strong. Flow
regions in which there is high shear or large pressure gradi-
ent are typically responsible for vorticity generation. This
indicates that the popular architecture fails to capture such
effects in the absence of an additional constraints that are
rooted in physics. For 2D cases, the vorticity is a function
of velocity components, and this information is available for
to the network in making predictions. Failure to preserve
such effects highlights the inability of this data-driven method
to relate cause (shear within the boundary layer) with effect
(gradient change in velocity field). This further suggests that
the application of such methods would require additional fine-
tuning based on domain specific knowledge, as one cannot

completely rely on the architecture to preserve such effects.

A sub-study (using 1800 samples), analyzing the influ-
ence of explicitly adding vorticity to the loss was conducted to
determine if it was possible to enhance the ability of the archi-
tecture to better develop causal correlations. This additional
term in the loss function did not result in a significant gain in
accuracy (see Appendix for details on this sub-study). This
result does not come as a complete surprise since vorticity is
a derived quantity dependent upon the velocity gradient infor-
mation, which is inherently present in the analysis conducted
based on velocity and density alone.

3.4 Generalization across geometric variation

To study the effect of generalization across geometry, the
prediction performance of the CNN based model is evaluated
for un-cambered and cambered airfoils. For this study, the test
data is an un-cambered airfoil selected randomly from the 11
un-cambered airfoils present in the master dataset. Multiple
models are then trained using multiple different sets of airfoils
(Figure 12). The goal of this study is to investigate the out-of-
sample performance of the models trained on the cambered
airfoils as tested on an un-cambered airfoil.

To have sufficient number of training samples in each sub-
dataset, all the physical parameter variation corresponding to
a particular airfoil is included. This implies that the model
is already generalizing across the entire physical variation,
which is the reason for relatively larger values of MAPE as
compared to the ones observed in the physics based studies.
Nevertheless, as the comparisons are across geometry and the
fact that the physical-based variation is consistent in all the
data samples, it is reasonable to imply, that this limitation
does not affect the overall trend of generalization.

It is observed that the model trained on 10 un-cambered
airfoils provides better prediction accuracy compared to the
model trained on just 10 cambered airfoils (Figure 12). A
26.36% difference in the predictions made by these two mod-
els indicates that the model trained on just cambered airfoil
data is insufficient for making predictions on un-cambered
airfoils. However, it is interesting to note that by just the
addition of 10 more cambered airfoils, the predictive perfor-
mance is at par (MAPE difference increase is just 1.03%)
with the model trained on the 10 un-cambered airfoils for the
un-cambered airfoil flow prediction. This out-of-sample per-
formance indicates that the model is capable of understanding
the underlying geometric variation beyond the proposed cate-
gorization based on the camber. This further highlights the
performance of the CNN based model on making predictions
on completely unseen geometry.

In the subsequent studies, the performance further im-
proves when more training data is added (Figure 12). Inter-
estingly, the addition of such a large sample of cambered
airfoils does not let the model over-fit the cambered airfoils
simulations. Instead, it improves the performance leading to a
reduction in MAPE by 12.40% compared to the model trained
on un-cambered airfoils alone. This fact provides some in-
sight regarding the potential mechanism that ascertains how
the network extracts geometric features from input shapes and
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Fig. 10. Flow field comparison between low and high Reynolds number simulations (Scaled). Top: Predictions for low Reynolds number

case. Bottom: Predictions for high Reynolds number case. Left: Ground truth from the CFD simulation. Center: Predicted flow field from

the model. Right: Absolute error between the ground truth and the CFD simulation. The black boxes highlight the wake regions in the flow

field

ties them to solution physics. Instead of directly associating
the input with the output flow field, the auto-encoder type
architecture allows the input geometry to be reduced into few
meaningful geometric features, which are then mapped onto
flow field data along with the input from the flow field bound-
ary conditions. Nonetheless, the demonstration of general-
ization capability and reasonable out-of-sample performance
implies that the extracted geometric features are common to
both cambered and un-cambered airfoils. Some examples of
such features could include the thickness and curvature which
are common for both cambered and un-cambered airfoils.

3.5 Dependence of geometric generalization perfor-
mance on dataset size

The Section 3.4 depicts how the chosen CNN based
model can generalize across the geometry for making pre-
dictions across completely unseen airfoil geometry. The pre-
dictions on the un-cambered airfoils presented in the Section
3.4 also indicate that the encoder-decoder type of architecture
allows systematic extraction of geometric features from the
input shape. This opens up avenues to reduce the geometri-
cally varying samples provided the chosen geometric features
are representative of the overall variation/distribution.

To study this, various cases are designed containing sam-
ples that capture various geometric details of the airfoil data.
The distribution of the airfoils chosen for training the various
models used in this section is summarized in Figure 13. The
test data is an airfoil that represents the mean of all the airfoils

in the master dataset when plotted based on their maximum
thickness and curvature values on a thickness vs. camber plot.
Case 1 represents the airfoils that have maximum/minimum
camber or thickness. Case 2 is an extension of Case 1 with 4
additional airfoils along the periphery of the polygon formed
by the corner airfoils on the Thickness-Camber plot. Case 3
represents a biased dataset i.e. the chosen airfoils have either
same camber or thickness as the test airfoil. Case 4 represents
a case of a random sampling of 8 airfoils. As the sampling
method is random, there is a possibility of the sampled airfoils
being well distributed across the test airfoil or being concen-
trated in a particular region. In fact, Case 4 represents such an
instance of concentrated distribution of the airfoils, situated
only in low thickness area. Figure 13 which excludes Case 5,
represents random distribution of airfoils with uniform distri-
bution across the test airfoil. These strategically chosen cases
allow study into the possibility of sample size reduction as
stated above. Case 1 and case 2 are of special importance. It
is believed that for the current characterization of the airfoils
(using thickness and camber), these cases should ideally be
sufficient to capture the encompassing geometric variation in
the master dataset. If a model trained on airfoils mentioned in
such cases is able to produce reasonable prediction accuracy,
the number of geometrically varying training samples can be
significantly reduced. The performance of the model based
on the above cases is now discussed in detail.

A model is trained on each one of cases mentioned above
and their predictive performance is evaluated against the test
average airfoil shown in Figure 13. The model trained the cor-
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Table 2. Mean Absolute Percentage Error (MAPE) values for the CNN predictions when trained using different choices of airfoils

MAPE (%
Case  Description (%) ?#Ot%l M%A};E
u Y% rho Total ol arrforls
Case 1 Model trained on 4 corner airfoils 15.768 11.113 17.098 43.980 11.00
Case 2 Model trained on 8 peripheral airfoils 3.577  2.049 1.324  6.950 0.87
Case 3 Model trained on 8 airfoils (same camber or thickness)  3.312 1.775 0.961 6.048 0.76
Case 4 Model trained on 8 random airfoils 4.409 2.776 1.731 8.915 1.11
Case 5 Model trained on 16 random airfoils 1.438 0.721 0.761 2.920 0.18
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Fig. 11.  Comparison between the u-velocity absolute error (scaled)
and Vorticity field from CFD. Top: Data for low Reynolds number
case. Bottom: Data for high Reynolds number case
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Fig. 12. Performance of the model for predictions on an un-
cambered airfoil

Fig. 13. Airfoil distribution for training the different models
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Fig. 14. Performance of the CNN model when trained using differ-
ent choices of airfoils

ner airfoils has the maximum MAPE (43.98%) and is found
to perform poorly as compared to the other cases where the
MAPE is less than 10% (Table 2, Figure 14). Moreover, the
model trained on 16 airfoils performs better compared to other
studies. This indicates that the accuracy is indeed directly
related to the number of training samples, when making pre-
dictions across the geometric variation. The model trained on
the 8 peripheral airfoils (Case 2) performs better than even
a biased model (Case 3) and although the error is almost
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Table 3. Conservation of mass comparison based on imbalance as
measured for CFD vs CNN prediction

Mass imbalance (kg/s/m)
0.164
2.981

True

Predicted

double compared to a model trained on 16 airfoils (Case 5),
(MAPE for Case 5=2.92% and MAPE for Case 2=6.95%)
the predictions are within reasonable limits of accuracy given
that each airfoil contains only 228 flow cases. All the models
in this section are trained with a relatively smaller training
dataset compared to the models trained in the physics-based
classification and this is the reason behind the MAPE com-
parisons being more conservative compared to the ones made
in physics-based classifications.

The best [MAPE/# of airfoils] ratio is obtained for a
model trained on a larger number of samples for obvious
reasons. However, this ratio for Case 2 ([MAPE/# of air-
foils] = 0.87) is very close to that of Case 3 ((MAPE/# of
airfoils] = 0.76), which represents the best distribution of the
8 airfoils given the test airfoil. A comparable [MAPE/# of
airfoils] ratio of Case 2 and Case 3, shows the capability of
Case 2 in capturing the underlying geometric variation rea-
sonably. Thus, Case 2 is quite beneficial in terms of reducing
the computational costs while maintaining reasonable levels
of accuracy. A model trained on fewer data points implies not
only cost savings in training the model, but also cost savings
in generating the required CFD cases. This behavior of the
CNN based model to pick up the relevant geometric features
from minimal data, unlike flow field features like shocks, can
be leveraged in design studies as a considerable amount of
time is required to generate each sample in the CFD stud-
ies. If an appreciable level of accuracy can be achieved by
a lower yet strategically planned sample, it would benefit
the initial design-space exploration and can bring down the
overall design cycle time.

Sections 3.4 and 3.5, which focused on studying the
ability of the model to capture the geometric variation, suggest
that the model is capable of generalizing across the variation
of geometry without overfitting to a particular class of airfoils.
Lastly, predictive performance of the model almost always
improves with the addition of more training data.

3.6 Mass conservation results

An application of such a data-driven method to physical
simulations like these would also require an appreciation of
the governing laws and invariances that are particular to the
studied physics [1]. To evaluate this, the model’s performance
is measured to check the compliance of the mass conservation
law. For computing the mass imbalance, the variables are
scaled back to original values. All the comparisons are made
with respect to the mass imbalance computed on the CFD
simulations that form the ground truth for this study. The re-
sults of mass conservation computed across the 2¢ x 2c square

domain defined around the airfoil geometry in the flow field
are shown in Table 3. The current CNN based model, without
explicit definition of conservation of mass as a loss function,
performs poorly for the most part, in obeying the conservation
law with the predictions being off by up to 13x from the true
values. There are techniques as suggested by [17] to incorpo-
rate these laws into the optimization framework by means of
loss function. However, such addition comes at an additional
computational cost even when it is just in training. Potentially,
this can be tackled either by generating a denser dataset or
adding extra constraints on a sparse dataset. Thus, through
this study, the assessment of the network’s ability to pick up
such physical effects, without explicit specification of gov-
erning physics during the training process is made. The wide
difference in the predicted and the true results demonstrates
the drawbacks of using such CNN based techniques as they
are. This necessitates either the incorporation of such laws
into the CNN framework or generation of a denser dataset,
both resulting in an additional cost.

4 Conclusions

In this research, we implemented a popular CNN based
framework in fluid flow field prediction and extended it to
various sets of physical parameters and geometric variation.
To the best of our knowledge, such a comprehensive study is
the first one of its kind. With incorporation of multiple flow
physics effects into the dataset, this study tackled the suitabil-
ity of this popular method in the context of generalizability as
opposed to development of a finely tuned model for a specific
application around a fixed set of physics.

A model trained on the entire master dataset is tested
at various categorically sampled test datasets. The Mean
Absolute Percentage error is found to be less than 5% for
each test dataset when compared to CFD. Thus it can be con-
cluded that such a network architecture adequately captures
the larger flow field patterns like wake flows or the regions
of stagnation. However, as it stands, it fails to capture sharp
gradient changes like the ones at wake boundaries or weak
shock waves occurring on the suction side of an airfoil in
transonic cases. Additionally, it struggles with the mass con-
servation in many cases. Generalization loss associated with
the available Mach number range was approximately 24%,
when compared to model that was trained on Mach specific
data. While this is better than certain analytical predictive
tools there is a noteworthy margin when compared to CFD
methods, which are already approximate in nature. Addition-
ally, the current dataset was slightly biased towards Mach
numbers in the subsonic region with only the Mach 0.7 case
having some regions of supersonic flow. Thus, comprehensive
positive claims about the overall generalizability of the model
for diverse Mach number based physics predictions, would re-
quire further analysis. Similarly, for the generalization across
the Reynolds number range, a 25% loss in predictive per-
formance (compared to model trained on specific Re data)
was observed across all Mach number variations when tested
using a generalized model. This behavior is attributed to the
widely varying flow features across the Re range (e.g. wakes,
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separation etc.). From these studies, it can be concluded that
overall the CNN based model suffers reduced fidelity when
generalizing across sub-sets of physics variation.

The out-of-sample performance of these models in gen-
eralizing over various flow regimes is extremely poor (ex. the
MAPE for a model trained on low Reynolds number data used
for testing on high Reynolds number cases was found to be
14.39% when compared to CFD). This is due to the widely
varying patterns in each of these regimes.

It can also be concluded that accuracy associated with
learning methods in the fluids domain depends on the data
sub-sampling technique used for a particular prediction task.
In other words, generalizability comes at an additional cost.
This cost can be in terms of accuracy or computational ex-
pense, if one decides to add extra features to support the
multiple physics. In general, a degradation of performance is
observed when a network trained on the full dataset is used
to make highly specific predictions. This indicates that there
exist far too many, subtle or flow regime specific flow features
for the network to capture. This also suggests that the popular
CNN architecture used for this study, does not reduce the di-
mensionality of physical parameter space, in a manner similar
to that of geometry. It can therefore be concluded, that one
has to intelligently produce samples in each flow regime to
allow the network to train equally on each physical parameter.

Most importantly however, we come back to the relative
success of CNN encoder-decoder structure in flow predic-
tion for geometric variations. In this study, we demonstrate
avenues by which this architecture can be fruitfully utilized re-
gardless of the architecture’s deficiencies. The CNN encoder-
decoder architecture does indeed exhibit a potential to gener-
alize better across geometric variation, albeit with reasonably
invariant flow physics. The results shown in Figure 12, sup-
port this conclusion. In this case a prediction was sought
across a uncambered airfoil. When the prediction was made
using using flow data from 10 cambered airfoils the results
contained higher error than for the case when the prediction
was made using 10 uncambered airfoils. However when the
same prediction was made using 39 cambered airfoils, the re-
sults were more accurate than the 10 uncambered airfoil case.
This knowledge facilitates the possibility of application of
this architecture, and other similar architectures, as a design
tool. As previously mentioned, for an aerial system flying at
any nominal trajectory point, it is not uncommon for differ-
ent parts of the vehicle to be experiencing different sets of
flow physics (e.g. stagnation point on the nose vs. a location
downstream of some protrusion). The generalization concern
across physics for such a circumstance, can be alleviated by
utilizing a pre-classifier at a higher level, that identifies the
appropriate local physics based on a nearest neighbor match
that exists in a pre-generated sparse CFD database for the
aerial vehicle. Once the physics is identified, a model that is
trained over only such physics using a much denser dataset of
diverse random canonical shapes can be used to make an accu-
rate prediction for the locality of interest. With this approach
to design we are not proposing that the learning architecture
be used as a replacement for CFD. Instead it supplements the
established design process by drastically reducing the size

of the initial CFD database that is required. We find that
this insight, which can be quite useful for real-world design
applications in the fluidic domain, is not readily and explicitly
available in current literature.

While we did observe a 12.4% improvement when pre-
diction was made with a generalized training set, it possible
that this is specific for geometries similar to the subset of
airfoils tested. For more sophisticated or composite geome-
tries further analysis will be undertaken as part of future work.
Notwithstanding the limitations, there is significant utility
in the selected airfoil dataset, as they represent variations
encompassing several important aerospace systems.

The results of the current analysis indicate that the model
can generalize the geometric space of chosen airfoils reason-
ably well. Moreover, it is shown that a reduced yet intelligent
sampling of the training dataset can lead to good levels of
accuracy at a fraction of the computational cost compared to
the models trained on a larger datasets.

Finally, the geometry versus physics generalization study
performed herein, provides a road-map of the strengths and
weaknesses of prediction, using generalized data-sets, in flu-
idic domains that contain variation in physics of the flow
regime and object geometry.
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