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Abstract

Counterfeiting in manufacturing is a crucial problem that has the potential to cause economic losses to both small and large businesses,
including the aerospace, automotive, and medical industry. Existing techniques for preventing counterfeiting are based on external
modification of the manufacturing process which incurs extra cost, and limits their use in everyday applications. In our work, we
take advantage of the inherent characteristics of the machine configuration (machine and process parameters) to identify whether a
given part is manufactured by a certain machine or class of machines. Each machine configuration has a unique coordinate error
distribution which is indicative of its precision and bias. The overarching idea is to differentiate between error distributions of two
machine configurations in order to determine whether the positional errors in a given part come from the same distribution as that of
the machine configuration. To be able to differentiate between two machine configurations robustly, we propose a novel topological
transformation technique based on the principle of Voronoi tessellation that exaggerates the difference between their error distributions.
We present a methodology for authentication of machined parts and validate it numerically and experimentally through the example of
additive manufacturing. This research work also offers various opportunities of further exploration in terms of part design, algorithm
of SplitCode, imaging and post processing methods and statistical variations.

Keywords: Voronoi tessellation, Topology change, Authentication, Counterfeiting, Coordinate error distributions, Additive
manufacturing

1. Introduction

1.1. Broader Context and Motivation

Ensuring security in manufacturing systems is among the cen-
tral challenges within the purview of cyber-physical production
systems (CPPS). The seamless integration of software and hard-
ware components and increased use of networking capabilities
has also resulted in a wide variety of avenues for attacks and
threats on CPPS. Much of the discussion regarding secure manu-
facturing focuses primarily on information-related breaches and
the potential approaches, such as decentralized computing and
block-chains, for addressing them [1]. However, we posit that
security in CPPS additionally requires the integration of both
computational and physical sub-systems of CPPS. In this paper,
our aim is to present an embodiment of this integrated notion of
secure manufacturing. We specifically focus on counterfeiting
and introduce a methodology for quantitative assessment of part
authenticity.

Counterfeiting is a significant problem that is not only preva-
lent in consumer goods, but also in high-end manufactured prod-
ucts. The problem affects all manufacturing sectors, including
the automotive, aerospace, defense, and pharmaceutical indus-
tries. Counterfeiting in the automotive sector, for example, is
a lucrative business, estimated to generate billions of dollars in
sales in the US every year [2, 3, 4]. Counterfeit mechanical parts,
such as engine mounts, seat-belts, brakes, fasteners, bearings,
valves, and springs not only result in lost corporate revenue and
lost taxes for the government, but also increase the likelihood
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of accidents and even fatalities [5, 6, 7]. Further, IBM has con-
sistently shown that the manufacturing industry has been facing
high security attack rates over the years, with being the second
most-attacked industry and experiencing the most data theft at-
tacks (33% of all data theft attacks) in 2020 [8].

While there has been significant research in counterfeit pre-
vention in electronic parts, research on counterfeit prevention of
non-electronic hardware and materials is still in its infancy [9].
Existing approaches for counterfeit mitigation include standards
to provide guidance for acquisition of authentic materials (e.g.,
SAE AS6174 [10]), attachment of RFID tags [11, 12], chemical
and DNA tagging [13, 14], watermarking [15], and information
embedding in additively manufactured (AM) parts [16, 17, 18].
These approaches for ensuring the authenticity of parts rely on
modifying the manufacturing process.

An alternate approach is to take advantage of the inherent ran-
domness of manufacturing processes, and unique characteristics
of materials, and manufacturing equipment to assess whether or
not a part is authentic. The idea of using statistical properties of
manufactured components is widely used in physically unclon-
able functions (PUFs) [19, 20] for electronic parts. Commonly
used PUFs involve evaluating integrated circuit (IC) responses to
a given challenge [20]; the responses are chosen such that they
vary randomly between instances of the IC even under identi-
cal manufacturing conditions. Examples include measuring the
spatially varying capacitance of a coating or the delay between
different gates of an IC [21]. In this paper, we apply the un-
derlying principle of leveraging randomness in manufactur-
ing configuration (machines and processes) to non-electronic
parts. To do so, we introduce a novel methodology to en-
code the distribution of process errors in part instances man-
ufactured with different parameters on a single machine, and

Preprint submitted to Elsevier September 3, 2023



across multiple machines.

1.2. Problem
Broadly, the problem of part authentication may refer to sev-

eral distinct cases such as verifying whether a part was created
on a (1) uniquely identifiable machine and process parameters
or (2) uniquely identifiable “class” of machines and process pa-
rameters. We consider counterfeiting scenarios where a given
part is either manufactured with a different class of machines
than intended, or using different process parameters than those
prescribed, or a combination of the two. Therefore, given a man-
ufactured part, the problem we seek to address is to determine
whether this part was manufactured using a given manufacturing
configuration (class of machine, process, and parameters).

Any combination of machine, process, and process parame-
ters leads to coordinate errors in the tool-tip caused due to the
intrinsic build of the machine, vibrations during the process, in-
herent coordinate biases etc. These errors manifest in the man-
ufactured part in the form of geometric deviations with respect
to the designed CAD model. Therefore, each part carries unique
characteristics (similar to a fingerprint) associated with its corre-
sponding manufacturing configuration.

We hypothesize that the geometric deviations across multiple
instances of a given part manufactured using the same manufac-
turing configuration belong to some common underlying error
distribution that is unique to the manufacturing configuration.
Consider a “reference” error distribution for a given manufac-
turing configuration that is determined by evaluating geometric
deviations for multiple instances of a given part with some geo-
metric features. Given a “test” part with the same features, our
technical problem (Figure 1) translates to determining the statis-
tical similarity between the reference and test distributions.

1.3. Challenge & Approach
Consider a part that has been designed with a specific set of

geometric features (e.g. holes of different sizes and shapes) to
be manufactured using a specific combination of machine, pro-
cess, and process parameters. One can measure and characterize
the manufacturing error by computing the geometric deviations
of such features with respect to the ideal (CAD) model. For in-
stance, one could estimate center-to-center distances for a circu-
lar hole or corner-to-corner deviations for polygonal holes, etc.
Measurements of these features (corners, centers, etc.) could
be performed using a variety of methods (e.g. photography,
photogrammetry, scanning, CMM etc.) depending on the type
(shape, material, etc.) of the part. The key challenge here is that
the coordinate error distributions of two similar but distinct man-
ufacturing configurations can be indistinguishable making au-
thentication prohibitively difficult. Furthermore, the process of
measuring geometric deviations (from imaging or other means)
adds additional errors to the distribution that may be inseparable
from the manufacturing errors.

One possible way to view this problem is that of creating
discriminatory features from two given distributions and it may
be possible to use feature engineering techniques from machine
learning. However, such techniques are limited because of the
need for fine tuning learning parameters and inherent lack of ex-
plainability. We propose a robust and novel geometric methodol-
ogy that exaggerates the differences between error distributions
of two machines. Our methodology is based on the application
of Voronoi tessellation [22] to transform coordinate errors of the
tool-tip into a topologically-induced error distribution [23, 24].
The idea behind our approach is that Voronoi tessellation of sites

arranged in rectangular grids admits a 4-valency vertex configu-
ration that is extremely sensitive to any noise in the location of
the sites. Specifically, any perturbation to the Voronoi sites in
a rectangular grid results in the splitting of the 4-valency vertex
into an edge — hence the name SplitCode. This interesting prop-
erty, when viewed from a statistical standpoint, leads to a unique
method for exaggerating the coordinate error distributions. As
such, this approach is general in that it can be applied to any type
of manufacturing process with any machine and process param-
eters.

1.4. Contributions
The prime purpose of our work is to authenticate parts printed

with different manufacturing configurations. For that, we want
to be able to measure the deviations resulting from the mechan-
ical structure of machines and process parameters, and to model
the connection between deviations from different manufacturing
configurations and the manufactured parts. To achieve this, we
make the following contributions:

1. Our primary contribution in this work is to introduce a new
concept that we call topologically transformed error distri-
bution, which is defined as a statistical exaggeration of dif-
ferences between two coordinate distributions.

2. Our second contribution is to apply this new concept to
manufacturing problems by developing a novel algorithm,
which we call SplitCode. By using the well-known principle
of Voronoi tessellation, SplitCode successfully exaggerates
the differences between the coordinate error distributions of
different manufacturing configurations.

3. Our third contribution is a part authentication scheme based
on SplitCode by identifying the geometric representations
that lead to the maximum exaggeration between two coor-
dinate error distributions.

To evaluate our methodology, we present a numerical valida-
tion of our scheme by investigating the effect of different known
distributions on the authentication method. As such, the pro-
posed method is universally applicable to authentication with any
type of a manufacturing process. However, to demonstrate our
approach in action, we specifically present an experimental case
study with additive manufacturing. A comparative analysis of
our topological transformed error distributions with respect to di-
rect coordinate error demonstrates the efficacy of our approach.

2. Background and Related Work

Given that we investigate our approach through additive man-
ufacturing (AM), we will review relevant research specific to AM
as the domain of application in terms of the potential threats and
authentication methods explored in literature.

2.1. Potential threats in Additive Manufacturing
Additive manufacturing (AM), commonly known as 3D Print-

ing, is the process of manufacturing 3D parts in a layer-by-layer
fashion based on a computer-aided design (CAD) file [25, 26].
It is a multi-step process combining both automated and manual
workflows. The process begins with designing a computer-aided
model of the part to be printed and storing design in a format
compatible with 3D printers, such as STereoLithography (STL),
Additive Manufacturing File (AMF) and 3D Manufacturing For-
mat (3MF). The information stored is used to create a G-code
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Figure 1: To find if the test part is manufactured by the reference machine, we compare the machine’s reference error distribution and the test part’s error distribution
to see if they belong to the same distribution.

with commands to control the position of the printing nozzle and
the bed. The G-code is optimized based on different parameters,
such as machine specification, material, support structure, layer
height, and printing speed. After printing, the part is post pro-
cessed to obtain a finished product. Yampolskiy et al. [25, 27]
discuss in their work how various elements in this process can be
compromised and manipulated depending on their role in the 3D
printing process.

For AM, major threats have been categorized into three main
groups - theft of technical data, sabotage, and illegal part manu-
facturing [28]. Technical data includes part specification, print-
ing and post-processing parameters, which could be comprised
through theft or reverse engineering [29, 30, 31, 32]. Few exam-
ples of sabotage targets include: the CAD model, G-code, print-
ing material, printing equipment, manufactured part or the print-
ing environment [25, 33, 34, 35]. The third major threat, unau-
thorized part manufacturing, arises due to the large availability
of 3D digital blueprint files online and increasing accessibility of
high quality AM equipment [36, 37].

These cyber-physical attacks adversely affect the AM industry
and parts, resulting in slow adaptation of the technology, eco-
nomical losses, and immature failure of additively manufactured
parts [33], along with endangering human lives [27, 36]. These
attacks give rise to counterfeiting of 3D printed parts, which has
disrupted key industries, including aerospace, automotive, and
medical industries [38, 39, 40]. Researchers have extensively ex-
plored this problem and introduced several authentication meth-
ods, which are discussed in the following section.

2.2. Authentication Methods in Additive Manufacturing

Many authentication methods utilize external appearance of
parts by surface tagging [15, 16, 41, 42] while others take ad-
vantage of the inner structure [43, 44, 45, 46]. Depending on the
where the information, or ”tag,” is located, different equipment
can be used for capturing this information for authentication,
such as cameras [16], scanners [15], micro-computed tomogra-
phy (micro-CT) scanner [43], or infrared (IR) cameras [47].

The technique proposed by Harrison et al. [48] is an exam-
ple of surface tagging. They present barcodes in the form of
physical notches on the surface of the printed part which when
swiped by fingernails produce a unique sound wave, which is
captured using a microphone. Such methods affect the appear-
ance of the 3D printed parts. Gupta et al. [49] propose a method

where additional features are introduced in the CAD model be-
cause of which the quality of the part is maintained only when
specific printing conditions are met and in all other cases pro-
duce lower quality parts. The disadvantage of this method is that
poor quality of 3D printed parts cannot be measured directly but
is only detected on premature failure of the part. Chen et al. [43]
discuss embedding of QR codes in multiple layers to eliminate
the effect of codes on mechanical properties of the 3D printed
part. This method requires usage of costly micro-CT equipment
for authentication, increased effort in designing, and high infill
percentage of parts. Recently, Brandman et al. [50] propose the
notion of physical hash for detecting if a part being 3D printed
is according to design specifications in real-time. Their idea is to
print a QR code derived as a hash string from the nominal pro-
cess parameters and tool-path and print it alongside the original
geometry for in situ measurement.

To address the issue of authentication in low infill parts, Kubo
et al. [44] present a method of using resonant properties of
objects. 3D printed parts are assigned unique resonant proper-
ties by changing their internal structure and can be differentiated
even if they have similar appearance. The change in the internal
structure is captured with acoustic sensing. Kubo et al. extend
their work by varying the infill patterns during slicing to create
unique resonant properties, which reduces the effort of 3D mod-
eling [45]. Sandborn et al. [51] propose a method for detecting
counterfeiting by measuring impedance identity of a part using
piezoelectric sensors.

Li et al. make an important argument [52] that 3D printers
possess unique fingerprints resulting from its hardware imper-
fections. In their work, they model a connection between the
fingerprints and the texture on the 3D printed parts. Dogan et
al. [42] also utilize the patterns appearing on the 3D printed
objects due to slicing instead of adding extra features to the
part. Their method differentiates between patterns that inherently
arise from varying the slicing parameters. Similarly, Delmotte et
al. [15] and ElSayed et al. [41] locally vary printing parameters
(layer height and printing speed, respectively) to introduce subtle
changes on parts’ surfaces for authentication. Taking inspiration
from these works, we propose a method called SplitCode to ad-
dress some of the existing challenges.

2.3. Our Work
The premise of our proposed approach is that authentication of

parts is intimately linked with the part quality which embeds the

3



4 valence 

Voronoi 

vertices

(a)Voronoi sites arranged in 

a grid resulting in a grid of 

quad Voronoi cells

Split 

edges

(b)Splitting of 4 valence vertices into 

edges on displacement of Voronoi sites 

from their original location in the grid

Figure 2: Change in the Voronoi site location leads to change in topology as four
valence vertices split into Voronoi edges.

natural randomness of the manufacturing process itself. How-
ever, it is the quantification of part quality that poses a technical
challenge. To our knowledge, there is no benchmark or com-
peting methodology other than semi-manual quality checks of
manufactured parts. On the other hand, digital methods pro-
posed in previous works either simply apply standards, or in-
volve new hardware additions (such as RFID), or require one to
modify a given manufacturing process (i.e. may not scale to dif-
ferent types of manufacturing processes). In contrast, our work
presents a systematic methodology for tackling part counterfeit-
ing. Because the methodology is purely based on applying statis-
tical transformation to geometric information to assess quality of
token parts, it is independent of the the manufacturing process.

3. Conceptual Preliminaries

Our authentication methodology entails the statistical compar-
ison of geometric deviations of a test part with a reference dis-
tribution that characterizes a given manufacturing configuration.
Therefore, our authentication approach relies on the ability to
better distinguish distributions coming from two different manu-
facturing configurations (i.e. two different combinations of ma-
chine, process, and parameters). To achieve this, we utilize the
concept of Voronoi tessellation to transform the original coor-
dinate distributions such that the difference between two distri-
butions coming from two different configurations is exaggerated
thereby enabling robust authentication. Here, we discuss the key
concepts underlying our methodology.

3.1. Voronoi Tessellation

A Voronoi tessellation of some given spatial domain is a
way to partition the domain with seed geometric entities (called
Voronoi “sites”) into mutually exclusive and exhaustive regions
(called Voronoi cells) such that each region contains exactly one
generating site and every point in a given region is closer to its
generating site than to any other. As such, the sites can take any
form (points, lines, curves, simplicial complexes, etc.). However,
if the Voronoi sites are points in Euclidean space, the Voronoi
cells are always convex. We specifically consider 2D Euclidean
domains wherein each Voronoi cell is a convex polygon with
Voronoi edges (the edges of the polygon) and Voronoi vertices
(the corners of the polygon). In particular, we are interested in

Coordinate error 

distribution

Coordinate error distribution 

translated to Voronoi sites

Topologically transformed 

error distribution

Figure 3: Topological transformation of two coordinate error distributions results
in exaggeration between them.

the topology of the Voronoi tessellation as captured by the num-
ber of edges incident on (i.e. the valency of) a given Voronoi
vertex in the tessellation.

3.2. Topological Transitions in Voronoi Cells
While it is obvious that the locations of the sites dictate the

cell geometry, the interesting aspect of the tessellations that is
relevant to us is that the site locations also affect the cell topology
through edge collapses and vertex splits. Consider a special case
wherein the sites are arranged in an infinite rectangular grid on
the plane. For this site configuration, the tessellation results in an
infinite rectangular grid (Figure 2a) — each cell is a rectangle and
each vertex has valency of four1. Now note that any perturbation
in even one of the sites results in at least one vertex to split into
an edge. For the rectangular site arrangement, this topological
shift is guaranteed to occur (Figure 2b). It is this sensitivity to
the sites that we leverage to exaggerate the error distribution.

3.3. Topologically Transformed Error Distribution
Based on the principle of topological sensitivity, we can de-

sign a transformation that enables us to distinguish two seem-
ingly indistinguishable error distributions. To perform such a
transformation, consider a 2D Euclidean domain comprised of
four Voronoi sites located at the corners of a square (without loss
of generality). As noted earlier, the Voronoi tessellation for this
arrangement is a single 4-valency vertex at the center with four
edges extending to point at infinity. Now, perturbing each of the
four sites using a given coordinate error distribution results in a
new distribution of the split edge at the center (Figure 3). Based
on this principle, any coordinate error distribution is transformed
into an equivalent statistical distribution of the split edge result-
ing from the topological change. It is this topological transfor-
mation that leads to the exaggeration of the difference between
two coordinate error distributions. We call this new distribution
the topologically transformed error distribution.

4. SplitCode: Algorithm

The process of computing topologically transformed error dis-
tribution from the original reference and test error distributions
comprises of the following steps:

Step 1. We start with four Voronoi sites arranged along the
vertices of a square inside a 2D Euclidean square domain (Fig-
ure 4a). These four points represent the ideal locations of the
geometric features in a manufactured part.

1This is not the only arrangement that results in a 4-valency vertex. There is
at least one more arrangement that results in a trapezoidal tessellation with all
4-valency vertices. However, an exhaustive listing of such arrangements is out of
scope of this paper.
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Figure 4: SplitCode: Algorithm.

Step 2. We compute the Voronoi tessellation for this arrange-
ment which results into an exhaustive grid of quad cells with
a 4-valency vertex at the center. We refer to this vertex as the
center point.

Step 3. We then consider a coordinate error distribution (Fig-
ure 4c) that characterizes (gives us an estimate of precision and
bias for) a particular manufacturing configuration.

Remark: In a real-world scenario, the coordinate error distri-
bution would typically by obtained from manufacturing sam-
ple parts and computing feature errors with respect to the ideal
(image of the CAD part). Here, a feature could be a geometric
entity such as a point, edge, corner, etc and the deviation of the
measured locations of these features from their ideal locations
is the distribution (example: Figure 4c).

Step 4. Given a coordinate error distribution (Figure 4c), we
simply copy it to each of the four Voronoi sites. Here, by copy-
ing, we mean that the error distribution, whose mean is the
origin, is translated such that the mean is a given Voronoi site.
Thus, we get four translated distributions with same standard
deviation but different mean locations, all referring to the same
manufacturing configuration (Figure 4d).

Remark: Therefore, the image in Figure 4d is essentially a
set of four copies of the image in Figure 4c with the means
centered at the four Voronoi sites.

Step 5.We then sample one point each from all the four trans-
lated distributions giving us four new Voronoi sites that could
be imagined to be the actual location of features in a manufac-
tured part and hence, shifted from the original Voronoi sites
(Figure 4e,f).

Step 6. In the final step, we again compute the Voronoi dia-
gram for the newly sampled Voronoi sites. As the new sites
are randomly located in the domain, the domain gets decom-
posed into four unequal Voronoi cells as oppose to a grid of
quad cells (Figure 4g). Consequently, the four valence center
point in the grid splits into a line with three valence endpoints
when the Voronoi sites are displaced. This line is known as the
Split Edge.

Through this process we transform the error resulting from a
manufacturing configuration into a split edge. It is important to
note here that even small changes in the location of the Voronoi
sites (small manufacturing error) can be very easily detected and
accurately captured in the resulting Voronoi tessellation. This is

𝒙𝟏, 𝒚𝟏

𝒙𝟐, 𝒚𝟐

Endpoints

Split Edge

𝜽𝟏

𝒍𝟏

𝜽𝟐

𝒍𝟐

Midpoint (𝒎𝒑)

Center Point (𝒄𝒑)

Split Edge

Figure 5: Split Edge can be represented either by its length, angle, and location
of the midpoint or by the location of its two endpoints.

possible because of the topology change occurring as the center
point, a four valence vertex splits into the split edge. Hence, we
utilize the split edge as our leading point for further work.

4.1. Split Edge Representation

Note that a topologically transformed error distribution essen-
tially represents the probability of a set of line segments (the split
edges) in 2D-space. Given that a line segment can be defined in
more than one way (e.g. two end-points, length-angle-midpoint,
etc), there is no unique way to compute the distribution. We con-
sider two different ways to represent the split edge (Figure 5)
and thereby the error distribution. The first representation is in
terms of the length of the edge (l1), its angle (θ1) with respect
to the horizontal axis, and the polar coordinates (l2, θ2) of the
midpoint (mp). The second representation is simply the Carte-
sian coordinates of the two end-points of the edge ((x1, y1) and
(x2, y2)). We experiment with these two combinations of param-
eters to select the representation that best differentiates between
reference distributions coming from two different manufacturing
configurations.

In both split edge representations, we require four parame-
ters to fully define the split edge i.e. either (l1, θ1, l2, θ2) or
(x1, y1, x2, y2). In other words, the topologically transformed er-
ror distribution is a 4-variate distribution. However, we note that
there is a natural separation of the parameters into two bi-variate
distributions. In the first case, we get one bi-variate distribution
from the length and angle of the edge (l1, θ1) and another from
the mid-point coordinates (l2, θ2). In other words, one distribu-
tion depicts the probability of occurrence of a split edge with a
specific length and angle and the second probability distribution
represents the probability of occurrence of a split edge with its
midpoint at a specific location. Similarly, for the second rep-
resentation, the location of each of the end points provides a
bi-variate representation. Here, the first probability distribution
gives the probability of occurrence of split edge with its first end-
point at a specific location and the second distribution exhibits
probability of occurrence of split edge with its second endpoint
at a specific location.

Regardless of how we represent the split edge, the two bi-
variate probability distributions resulting from the split edges can
be mapped to the original coordinate error distribution and are
called topologically transformed error distributions (Figure 6).
It is entirely possible that a given split edge representation may
lead to better exaggeration while another may lead to indistin-
guishable results. Therefore, a necessary step in the design of
our authentication scheme is to systematically investigate differ-
ent edge parametrizations and their corresponding ability to dif-
ferentiate between similar coordinate error distributions.
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Figure 6: When multiple sets of 4 Voronoi sites are sampled from an error dis-
tribution, multiple split edges are generated. Length, angle, midpoint, and end-
points of these split edges are represented through bi-variate probability distribu-
tions called topologically transformed error distributions.

5. Design of Authentication Scheme

Our authentication scheme is predicated upon the abil-
ity to distinguish two distributions coming from two dif-
ferent manufacturing configurations. In simpler terms, we
wish our scheme to be able to tell apart two distinct com-
binations of machines, processes, and process parameters.
As a concrete example, suppose we produce multiple in-
stances {ii, i2, . . . , in} using manufacturing configuration I and
{ ji, j2, . . . , jm} produced using manufacturing configuration J.
Note that each of these part instances result in an error distri-
bution, namely PI = {(P1(i1), P2(i1)), . . . , (P1(in), P2(in))} and
PJ = {(P1(i1), P2(i1)), . . . , (P1(in), P2(in))}. Here, (P1(.), P2(.))
signify the two bi-variate distributions we get from the split edge.

Our goal is to determine the representation of the split edge
such that the sets PI and PJ admit two separable clusters. In
other words, instance distributions coming from configuration I
should be clustered together and should be separable from the
cluster generated from the instance distributions of configuration
J. To select the right split edge representation, we conducted a
simulated experiment as detailed in the following sections.

5.1. Mapping Part Instances to the Distribution Space

In order to select the right split edge representation, we need
a method that maps a set of instance distributions to a common
space — a distribution space — so as to observe whether in-
stances produced by a given manufacturing configuration cluster
together and whether different configurations lead to separable
clusters. Given a pair (P1(i), P2(i)) of the two bi-variate distribu-
tions from some part instance i, we can map this to an ordered
pair
(
DKL(P1(i) ‖ Q1),DKL(P2(i) ‖ Q2)

)
. Here, DKL(A||B) is the

Kullback–Leibler divergence (also known as the statistical dis-
tance or relative entropy) of a probability distribution B from A.
In our case, we choose Q1 and Q2 as two uniform distributions
that span the maximum intervals for the corresponding variables
as follows:

1. For split edge representation 1:

Several topologically transformed  

error distributions

Coordinate error 

distribution KL Divergence plot 

Length & Angle

M
id

p
o
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distribution

Figure 7: Difference between topologically transformed error distributions and
reference uniform distribution is shown in the distribution space. In this example,
each point is is the ordered pair

(
DKL(P1 ‖ Q1),DKL(P2( ‖ Q2)

)
where P1 is the

bi-variate distribution of the length and angle of the split edge and P2 is the bi-
variate distribution of the coordinates of the mid-point of the edge.

The variables for Q1 are 0 ≤ l1 ≤
√

2 (length of diagonal
of the unit square) and 0 ≤ θ1 ≤ 2π. Therefore the height
h(Q1) = 1

4π
√

2
. The variables for Q2 are 0 ≤ l2 ≤ 1

√
2

(half-
length of diagonal of the unit square) and 0 ≤ θ2 ≤ 2π.
Therefore the height h(Q2) = 1

2π
√

2
.

2. For split edge representation 2:
The variables for Q1 and Q2 are −0.5 ≤ x1, y1, x2, y2,≤ 0.5
(the min and max coordinates in the unit square). Therefore
the heights h(Q1) = h(Q2) = 1

2 .

For a given manufacturing configuration I with distribu-
tions PI = {(P1(i1), P2(i1)), . . . , (P1(in), P2(in))}, this results
in a set of points where each pair (P1(ik), P2(ik))} maps to
(DKL(P1(ik) ‖ Q1),DKL(P2(ik) ‖ Q2)) in the distribution space for
1 ≤ k ≤ n (Figure 7).

In the first representation method, we use DKL to map the
probability distributions generated from length-angle of the split
edges and and the midpoint to the distribution space. In the sec-
ond representation, we map the two probability distributions gen-
erated from the two endpoints of split edges. Therefore, we can
use this process to compute two different mappings of the same
set of part instances. Our goal in subsequent sections is to design
a series of experiments to compare which representation enables
better differentiation between part instances produced by two dif-
ferent manufacturing configurations.

5.2. Experiment Design for Split Edge Representation
If we know the function of error distribution generated from

a given manufacturing configuration I, we can create mul-
tiple instances {ii, i2, . . . , in} of the same manufacturing con-
figuration by randomly sampling points from the original er-
ror distribution. Error distribution of each instance leads to
two bi-variate distributions (P1(i), P2(i)) which can be further
mapped to a distribution space in terms of an ordered pair(
DKL(P1(i) ‖ Q1),DKL(P2(i) ‖ Q2)

)
. To find the representation

of split edge that consequently gives rise to separable clusters
of ordered pairs

(
DKL(P1 ‖ Q1),DKL(P2( ‖ Q2)

)
for each man-

ufacturing configuration, we simulate error distributions result-
ing from different manufacturing configurations. Application of

6



σ = 0.01 σ = 0.011 σ = 0.02 σ = 0.03 σ = 0.05 σ = 0.06 σ = 0.08

KL Divergence – Length and Angle KL Divergence – Endpoint 1

20 25 30 35 40 45 50 20 25 30 35 40
K

L
 D

iv
er

g
en

ce
 –

E
n

d
p

o
in

t 
2

20

24

28

32

36

40

5

10

15

20

25

35

K
L

 D
iv

er
g

en
ce

 -
M

id
p

o
in

t

30

Figure 8: DKL Plots generated from length, angle, midpoint and two endpoints of
split edges for error distributions with same mean and varying standard deviation.

SplitCode on these simulated error distributions generates two
different mappings as a result of two representations of the split
edge. These mappings can be compared to find the representa-
tion of the split edge that simplifies differentiation between error
distributions of different manufacturing configurations.

For these simulations, we assume coordinate error distribu-
tions to be bi-variate normal distributions with a specific mean
and standard deviation value. We perform comparison between
the two representations of the split edge for the following two
groups of coordinate error distributions:

1. Bi-variate normal distributions with same mean and
varying standard deviation - In the first group, we gener-
ate seven bi-variate normal distributions with their mean at
the origin and standard deviation as 0.01, 0.011, 0.02, 0.03,
0.05, 0.06 and 0.08. The co-variance for these distributions
is zero. All seven distributions consist of 5000 points.This
group of coordinate error distributions imitates the scenario
where different manufacturing configurations produce part
instances with different precision.

2. Bi-variate normal distributions with same standard
deviation and varying mean - Second group comprises of
bi-variate normal distributions with a standard deviation of
0.05 and varying means. The co-variance value of these dis-
tributions is zero and they too consist of 5000 points each.
This group talks more about the difference in bias resulting
from different manufacturing configurations.

The location of mean for these distributions are selected in
three categories. In category 1, we first select few loca-
tions in the first quadrant along the line defined by equa-
tion x = y, at an increasing distance from the origin such as
(0.01, 0.01), (0.011, 0.011), (0.1, 0.1), (0.2, 0.2), (0.21, 0.21)
and (0.22, 0.22). The goal here is to understand how the na-
ture of bi-variate distributions change with increasing dis-
tance of mean location from origin. In the second cate-
gory, we select mean locations in the first quadrant along
a line with slope of 0.5 such as (0.1, 0.05), (0.2, 0.1) and
(0.25, 0.125). This is to investigate the variation in bi-
variate distributions with the change in the slope of the line
along which mean location is chosen. Finally, we select
some locations in all four quadrants equidistant from the
center and the two axes in the third category. In this cate-
gory, the means of error distribution are located at (0.1, 0.1),
(−0.1, 0.1), (−0.1,−0.1) and (0.1,−0.1). This would help us
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Figure 9: DKL Plots generated from length, angle, midpoint and two endpoints
for error distributions with varying mean and same standard deviation.

to understand how bi-variate distributions change with the
quadrants in which mean is located.

We generate 20 instances for each manufacturing configura-
tion which gives rise to 20 pairs of bi-variate distributions and
thus, a set of 20 points in each mapping in the distribution space.
Detailed comparison between mappings obtained from two rep-
resentations of the split edge for the aforementioned groups is
given in the following section.

5.3. Selection of the Split Edge Representation

5.3.1. Same Mean and Varying Standard Deviation
We observe that for this group of error distributions, when bi-

variate distributions generated from the length, angle, and mid-
point of split edge are mapped to the distribution space, we
get clusters of points belonging to instances generated with the
same manufacturing configuration (Figure 8). In addition to that,
clusters belonging to different manufacturing configurations are
clearly separable. On the other hand, when endpoints are used
to represent split edges, points belonging to one manufacturing
configuration forms a close cluster. However, these clusters can-
not be clearly separated for different manufacturing configura-
tions as they overlap each other (Figure 8). Thus, part instances
produced with different manufacturing configurations resulting
in error distributions with same mean but varying standard de-
viation can be better distinguished by using length, angle, and
midpoint representation of the split edge.

We note that for distributions with same mean, as the stan-
dard deviation of the error distribution increases, location of the
sampled Voronoi sites move farther from the center point. As
a result, we see a clear variation in the length of the split edge
with increasing standard deviation but not in its location. Con-
sequently, we observe a monotonically decreasing behavior in
the
(
DKL(P1 ‖ Q1)

)
value obtained from the length and angle bi-

variate distribution as the deviation in the error distribution in-
creases (Figure 10a). The median

(
DKL(P1 ‖ Q1)

)
value for er-

ror distribution with lowest deviation of 0.01 is 48.1490 and the(
DKL(P1 ‖ Q1)

)
for the highest deviation distribution is 25.8009.

In between these two distributions, the
(
DKL(P1 ‖ Q1)

)
value de-

creases to 47.7912, 43.3260, 38.6587, 32.4051, and 29.0111 for
coordinate error distributions with a standard deviation of 0.011,
0.02, 0.03, 0.05, and 0.06 respectively. However, we do not
observe much variation in the

(
DKL(P2 ‖ Q2)

)
values generated
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Figure 10: DKL generated for the length and angle, and the midpoint of the split
edges are shown for error distributions with varying standard deviation and vary-
ing mean respectively.

from midpoint bi-variate distributions across all coordinate error
distributions (Figure 8).

5.3.2. Same Standard Deviation and Varying Mean
Mappings obtained for distributions in this group tell us that,

when split edge representation 1 (length, angle, midpoint) is
used, bi-variate distributions of instances coming from one man-
ufacturing configuration map to points in a close separable clus-
ter in the distribution space (Figure 9). However, bi-variate dis-
tributions resulting from the second representation of the split
edge are randomly mapped to points in the distribution space.
We do not get separable cluster for each manufacturing config-
uration. Instances produced with all manufacturing configura-
tions contribute to one common cluster in the distribution space
making differentiation between different manufacturing config-
urations difficult (Figure 9). Thus, for part instances produced
with different manufacturing configurations resulting in error dis-
tributions with varying mean but same standard deviation, length,
angle, and midpoint representation of the split edge offers better
differentiation.

When the location of the mean of error distributions with
same standard deviation change, location of the split edge is
affected. No difference is observed in the length of the split
edge. Hence, in this case the midpoint of the split edge is
more important than its length. Thus for distributions with same
mean but varying standard deviation, we observe a pattern in the

(
DKL(P2 ‖ Q2)

)
values generated from midpoint bi-variate dis-

tributions (Figure 10b). The median
(
DKL(P2 ‖ Q2)

)
value for

distributions with their mean at (0.01, 0.01) and (0.011, 0.011)
is 15.4593 and 16.9105 respectively. Then as the distance of
the mean of error distributions from the origin increases such as
for error distributions with their mean at (0.1, 0.1), (−0.1, 0.1),
(−0.1,−0.1) and (0.1,−0.1), the median

(
DKL(P2 ‖ Q2)

)
value

also increases to 33.8169, 33.7143, 32.8356 and 34.3296 respec-
tively. After this we observe a drop in

(
DKL(P2 ‖ Q2)

)
values

as the error distributions move further from the origin. We get
a median

(
DKL(P2 ‖ Q2)

)
value of 28.3907, 28.3804, 28.7866,

27.2097, 28.1860, 27.9994 for error distributions with their
mean at (0.2, 0.2), (0.21, 0.21), (0.22, 0.22), (0.1, 0.05), (0.2, 0.1),
(0.25, 0.125) respectively.

This shows that even after the first drop,
(
DKL(P2 ‖ Q2)

)
con-

tinues to increase with increasing distance of the mean from the
origin (Figure 10b). We also note that

(
DKL(P2 ‖ Q2)

)
values for

error distributions that are equidistant from the origin and axes
in all four quadrants lie in a very close range and

(
DKL(P2 ‖ Q2)

)
does not change significantly with the slope of line on which
mean of error distributions are located (Figure 10b). However,
not much variation was observed in the

(
DKL(P1 ‖ Q1)

)
values

across all coordinate error distributions (Figure 9).

5.3.3. Analysis
Our numerical simulations show that the length and angle

(l1, θ1) of the split edge and the coordinates of the midpoint
(l2, θ2) exhibit exaggeration to distinguish between coordinate er-
ror distributions of different manufacturing configurations. Not
only that, a direct comparison of the original coordinate error
distributions results in a near constant value (31.2792) of the KL-
divergence making it prohibitively difficult to perform authenti-
cation. Therefore, we get better characterization of manufactur-
ing configurations using our topologically transformed error dis-
tributions specifically with the length, angle, and midpoint of the
split edge. This consequently shows that by applying topolog-
ical transformation enabled by SplitCode, we can successfully
distinguish part instances and their error distributions pro-
duced with different manufacturing configurations.

A more important observation to make is that each of these
parameter pairs (length-angle vs. midpoint) exaggerate different
types of properties between distributions. Specifically, the length
and angle (l1, θ1) of the split edge responds well to the standard
deviation of the coordinate error distribution (Figure 10(a)). On
the other hand, the midpoint (l2, θ2) responds better to the lo-
cation of the mean of the original coordinate error distributions
(Figure 10(b)). For a focused investigation of our approach, we
will consider distributions that differ in their spreads (i.e. stan-
dard deviation). This case signifies manufacturing configurations
with different precision. In the rest of the paper, we will focus on
the distribution space populated based on the length and angle
(l1, θ1) of the split edge.

5.4. Overview of Authentication Procedure

Our authentication scheme is formulated as a statistical com-
parison between the topologically transformed error distribution
of a test part, i.e. the test distribution, with a reference distribu-
tion that characterizes a given manufacturing configuration (class
of machine, process, and parameters) (Figure 11). The reference
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Figure 11: Authentication procedure: SplitCode is applied on error distributions of a manufacturing configuration and the test part to obtain topologically transformed
error distributions (reference and test distribution). Reference and test distribution are compared with a uniform distribution in terms of KL divergence and are mapped
to a distribution space as

(
DKL(P1 ‖ Q1)

)
. Later

(
DKL(P1 ‖ Q1)

)
values obtained from reference and test distributions are tested against each other through a one

variable KS test to find if the test part is printed with the given manufacturing configuration.

error distribution is defined for a combination of a part geome-
try and a given manufacturing configuration and is obtained as
follows:

1. Manufacture multiple instances of the part geometry with
the given manufacturing configuration.

2. For each manufactured instance,

(a) Measure the geometric deviations. For example, if the
part geometry consists a set of circular holes, the devi-
ations could be the difference between the estimated
hole center with the ideal center (as defined in the
CAD model of the part).

(b) Generate the coordinate error distribution by combin-
ing all deviations into one sample.

3. Combine the coordinate error distributions for all the man-
ufactured instances into a single distribution.

4. Apply the SplitCode algorithm to generate the topologi-
cally transformed error distribution. This final distribution
is called the reference distribution.

5.4.1. Authentication Test
Given the reference and test distributions, we begin by map-

ping them to the distribution space (Figure 11). As highlighted
in our design of scheme, both the reference and test distributions
are computed based on the length and angle of the split edge.
Recall that these are both bi-variate distributions and result in
a uni-variate set of points in the distribution space (after map-
ping using KL divergence)(Figure 11). Subsequently, we per-
form one-variable Kolmogorov-Smirnov (KS) test in order to de-
termine whether the test distribution comes from the same manu-
facturing configuration as the reference distribution (Figure 11).
The p−value of the KS test quantifies whether the reference and
test samples come from the same underlying distribution func-
tion (the null hypothesis).

We accept the null hypothesis (the two distributions come from
a common underlying distribution) if the p ≥ ps where ps is a
significance threshold for the reference manufacturing configu-
ration. Typically, p < 0.05 is considered statistically significant

to reject the null hypothesis in most statistical tests. For instance,
in our case, p < 0.05 would mean that the test instance was pro-
duced using a manufacturing configuration different from the one
represented by the reference. In other words, if p < 0.05, then the
test instance is not authentic. However, we note that a constant
significant threshold is not suitable for comparing an arbitrary
pair of distributions. The threshold may be different for different
manufacturing configurations. Therefore, given a reference dis-
tribution for a manufacturing configuration under question, our
authentication scheme additionally prescribes steps to determine
its intrinsic threshold as discussed below.

5.4.2. Significance Threshold
Significance threshold is the threshold value that helps us to

decide if a particular part is manufactured with a given manufac-
turing configuration or not. Every manufacturing configuration
has a different significance threshold just as it leads to a differ-
ent error distribution. To find significance threshold for a given
manufacturing configuration, we follow a simple procedure. We
simply perform a statistical (KS) test between a reference and a
test error distribution where the test is known to be generated us-
ing the same manufacturing configuration as the reference. The
p−value (ps) resulting from this test is used as the significance
threshold for the reference error distribution. The basic idea
behind this is that when a test error distribution of a part pro-
duced with a different manufacturing configuration are statisti-
cally compared with the reference error distribution, the p−value
for the KS test should be lower than (ps) as the two distributions
in consideration do not belong to the same distribution. Hence,
(ps) obtained by statistically comparing reference error distribu-
tion and known test error distribution of the same manufacturing
configuration is considered as the significance threshold (ps) for
that manufacturing configuration.

6. Numerical Validation of Authentication with SplitCode

Our first objective for validating the SplitCode authentication
scheme is to understand its ability to authenticate a test instance
with respect to a reference. To achieve this objective, we con-
ducted a series of comparative experiments wherein we consider
two manufacturing configurations A and B. We then numerically
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Category of 

Distributions
Condition Cases

Before Transformation After Transformation

Significance 

Threshold

Cross Test 

Results

Possibility of 

Authentication

Significance 

Threshold

Cross Test 

Results

Possibility of 

Authentication

Same Mean, Varying 

Standard Deviation, 

Zero Co-variance

𝜇𝐴 = 𝜇𝐵
σ𝐴 ≠ σ𝐵

σ𝐴12 = σ𝐵12 = 0 

σ𝐵 - σ𝐴 = 0.0001 
𝑝𝑠𝐴
∗ = 0.5522

𝑝𝑠𝐵
∗ = 0.5522

𝑝𝐴𝐵
∗ = 0.5982

𝑝𝐵𝐴
∗ = 0.4633

No
p𝑠𝐴 = 0.9050

p𝑠𝐵 = 0.1794

p𝐴𝐵 = 0.9239

p𝐵𝐴 = 0.3112
No

σ𝐵 - σ𝐴 = 0.001 
𝑝𝑠𝐴
∗ = 0.5522

𝑝𝑠𝐵
∗ = 0.5522

𝑝𝐴𝐵
∗ = 0.0501

𝑝𝐵𝐴
∗ = 0.0505

Yes
p𝑠𝐴 = 0.9050

p𝑠𝐵 = 0.0626

p𝐴𝐵 = 0.00002

p𝐵𝐴 = 0.0199
Yes

Same Standard 

Deviation, Varying 

Mean, Zero Co-variance

𝜇𝐴 ≠ 𝜇𝐵
σ𝐴 = σ𝐵

σ𝐴12 = σ𝐵12 = 0

𝜇𝐵 - 𝜇𝐴 = 0.001 
𝑝𝑠𝐴
∗ = 0.5522

𝑝𝑠𝐵
∗ = 0.5522

𝑝𝐴𝐵
∗ = 0.5295

𝑝𝐵𝐴
∗ = 0.3280

Yes
p𝑠𝐴 = 0.0463

p𝑠𝐵 = 0.0034

p𝐴𝐵 = 0.0463

p𝐵𝐴 = 0.0034
No

𝜇𝐵 - 𝜇𝐴 = 0.01 
𝑝𝑠𝐴
∗ = 0.5522

𝑝𝑠𝐵
∗ = 0.5522

𝑝𝐴𝐵
∗ = 0.0005

𝑝𝐵𝐴
∗ = 10−05

Yes
p𝑠𝐴 = 0.0012

p𝑠𝐵 = 0.0001

p𝐴𝐵 = 0.0463

p𝐵𝐴 = 10−07
No

Same Mean, Varying 

Standard Deviation

Non-zero Co-variance

𝜇𝐴 = 𝜇𝐵
σ𝐴 ≠ σ𝐵

σ𝐴12 = σ𝐵12 ≠ 0 

σ𝐵 - σ𝐴 = 0.001 
𝑝𝑠𝐴
∗ = 0.2975

𝑝𝑠𝐵
∗ = 0.2742

𝑝𝐴𝐵
∗ = 0.2591

𝑝𝐵𝐴
∗ = 0.3580

No
p𝑠𝐴 = 0.0410

p𝑠𝐵 = 0.0656

p𝐴𝐵 = 0.0410

p𝐵𝐴 = 0.1535
No

σ𝐵 - σ𝐴 = 0.01 
𝑝𝑠𝐴
∗ = 0.2975

𝑝𝑠𝐵
∗ = 0.1091

𝑝𝐴𝐵
∗ = 0.0516

𝑝𝐵𝐴
∗ = 0.0009

Yes
p𝑠𝐴 = 0.0410

p𝑠𝐵 = 0.4333

p𝐴𝐵 = 0.0001

p𝐵𝐴 = 0.0006
Yes

Same Mean, Same 

Standard Deviation, 

Varying Co-variance

𝜇𝐴 = 𝜇𝐵
σ𝐴 = σ𝐵

σ𝐴12 ≠ σ𝐵12

σ𝐵12 − σ𝐴12 = 

0.02

𝑝𝑠𝐴
∗ = 0.5522

𝑝𝑠𝐵
∗ = 0.2742 

𝑝𝐴𝐵
∗ = 0.1635

𝑝𝐵𝐴
∗ = 0.1769

Yes
p𝑠𝐴= 0.0248

p𝑠𝐵 = 0.0656 

p𝐴𝐵 = 0.0146

p𝐵𝐴 = 0.0656
No

Table 1: Authentication results for numerically validated distributions is shown. Rows 1-4 represent the four cases illustrated in Figure 12

(c) μ𝑎= μ𝑏 ,
σ𝑎≠ σ𝑏,

σ𝑎12 = σ𝑏12 ≠ 0

(a) μ𝑎= μ𝑏 ,
σ𝑎 ≠ σ𝑏,

σ𝑎12 = σ𝑏12 = 0

(b) μ𝑎≠ μ𝑏 ,
σ𝑎 = σ𝑏,

σ𝑎12 = σ𝑏12 = 0

(d) μ𝑎= μ𝑏 ,
σ𝑎 = σ𝑏,

σ𝑎12 ≠ σ𝑏12

Figure 12: SplitCode was numerically validated for four types of known distribu-
tions - a) Distributions with same mean, zero co-variance, varying standard de-
viation, b) Distributions with same standard deviation, zero co-variance, varying
mean, c) Distributions with same mean, non-zero co-variance, varying standard
deviation, d) Distributions with same mean, same standard deviation, varying
co-variance.

simulate reference and test distributions for each of these config-
urations.

6.1. Experimental Approach
We follow the following experimental approach:

• Authentication without SplitCode: We generate coordinate
error distributions A∗re f , A∗test, B∗re f , and B∗test in the original
space of geometric deviations in 2D Euclidean space. We
then conduct pairwise comparisons between the reference
and test distributions using a two-variable KS test.
Similar to our approach in SplitCode, we first find the sig-
nificance thresholds, namely p∗sA for A∗re f , p∗sB for B∗re f . Our
experiment (cross test) is then to compute p∗AB and p∗BA,
which are the p−values obtained from comparing B∗test with
respect to A∗re f and vice-versa respectively.

• Authentication with SplitCode: Here we use our authenti-
cation scheme (section 5.4) after topological transformation
of the errors to obtain Are f , Atest, Bre f , and Btest in the distri-
bution space using KL-divergence for length and angle (l1
and θ1). We then conduct pairwise comparisons between the
reference and test distributions using a one-variable KS test.
We first find the significance thresholds, namely psA for
Are f , psB for Bre f . Our experiment (cross test) is then to

compute pAB and pBA, which are the p−values obtained
from comparing Btest with respect to Are f and vice-versa re-
spectively.

Here, A∗re f , and A∗test have the same mean, standard deviation
and co-variance. Similarly, B∗re f , and B∗test have the same mean,
standard deviation and co-variance. A∗re f , and B∗re f comprise of
5000 points whereas, A∗test, and B∗test consist of 500 points. The
difference in the number of points between reference and test
error distributions is to emulate the scenario that reference error
distribution is captured from multiple instances whereas a test
error distribution is captured from one.

For every cross test that gives a p−value less than the signif-
icance threshold for the reference distribution in consideration,
we say that we get one true negative result (for example when
p∗AB < p∗sA, p∗BA < p∗sB before transformation or pAB < psA,
pBA < psB after transformation). Given two manufacturing con-
figurations, when both the cross test results are true negative, we
can assert that authentication is perfectly possible for that case.
If any one or both cross tests result in p−value greater than or
equal to their corresponding significance threshold, we get one
or two false positive results respectively. In such a situation, we
state that the authentication has failed.

6.2. Experiment Design
We perform numerical experiments for four cases of bi-variate

normal distributions as follows:

Case 1 (Figure 12a): Same means (µa = µb), different stan-
dard deviations (σa , σb), and zero co-variances (σa12 =
σb12 = 0).

Case 2 (Figure 12b): Different means (µa , µb), same stan-
dard deviations (σa = σb), and zero co-variances (σa12 =
σb12 = 0)

Case 3 (Figure 12c): Same means (µa = µb), different stan-
dard deviations (σa , σb), and non-zero equal co-variances
(σa12 = σb12 , 0)

Case 4 (Figure 12d): Same means (µa = µb), same standard
deviations (σa = σb), and different co-variances (σa12 ,
σb12)
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The aforementioned cases are selected to explore authentica-
tion between possible pairs of manufacturing configurations with
varying error distributions. Two manufacturing configurations
can either vary in their precision, bias or both. In statistical
terms, coordinate error distributions of two manufacturing con-
figurations can have different means, standard deviations or co-
variances. In terms of physical interpretation, the first and third
cases (Figures 12a,c) essentially represent a scenario with two
machines that have different precision. An example could be two
3D printers of the same make (or even the same 3D printer) and
model but one printing at a higher speed than the other. The sec-
ond case (Figure 12b) represents a scenario with two machines of
the same make and model working at same speeds but with dif-
ferent biases (which may be caused due to different initialization
or calibration errors). The final fourth case (Figure 12d) repre-
sents a scenario with completely different machines, printing at
possibly different speeds. These scenarios are investigated to de-
velop a deeper understanding of the feasibility of SplitCode for
authentication.

6.3. Results: Case 1 (µa = µb, σa , σb, σa12 = σb12 = 0)

In this category we will study if topological transformation is
required for comparing two coordinate error distributions with
same bias but different precision. Here we study two different
cases. Distributions with higher standard deviation signify er-
ror distribution of manufacturing configurations producing part
instances with less precision.

All error distributions considered in this category have their
mean at (0, 0) and have zero co-variance. In the first case, we
have A∗re f and A∗test with a standard deviation of 0.01 and a B∗re f
and B∗test with a standard deviation of 0.0101. The difference in
the standard deviations of A and B is 10−4. Before topological
transformation, as the p−value (p∗BA) for cross test is less than
the significance threshold for B∗re f (p∗sB), we get one true nega-
tive result (Table 1). However, the p−value (p∗AB) is greater than
the significance threshold for A∗re f (p∗sA) which gives us one false
positive result (Table 1). Hence, authentication is not possible for
this case without topological transformation. After performing
topological transformation, results of both the cross tests (pAB,
pBA) turn out to be greater than their corresponding significance
threshold (Table 1) and thus, leads to two false positive results.
Hence, when the difference in standard deviation of two distribu-
tions with same co-variance and their mean at the origin is 10−4,
authentication is not possible both before and after performing
topological transformation.

We increase the difference in the standard deviations of A and
B to 10−3 in case 2. In this case, we have A∗re f and A∗test with a
standard deviation of 0.01 and B∗re f and B∗test with a standard de-
viation of 0.011. Here p−value obtained for the two cross tests
(p∗AB, p∗BA, pAB, pBA) are lower than their corresponding signifi-
cance thresholds both before and after topological transformation
(Table 1). This gives us a perfect authentication case as we get
two true negative results before transformation as well as after.
Thus, we observe that for manufacturing configurations resulting
in parts with different precision, when the difference between the
standard deviation of their error distributions is as low as 10−4

authentication is not possible with or without topological trans-
formation. However, when the difference in the two standard
deviation values is in the range of 10−3 or maybe higher, we can
successfully authenticate 3D printed parts both before and after
topological transformation.

6.4. Results: Case 2 (µa , µb, σa = σb, σa12 = σb12 = 0)
In this category we study two cases where the difference in the

mean locations of two error distributions in the first case is lower
than the second. Here, we have error distributions with different
biases where distributions with their mean locations closer to the
origin resemble manufacturing configurations generating lesser
error and error distributions with mean locations farther from the
origin showcase higher error. Particularly for this category of
distributions, we focus on the distribution space populated based
on the midpoint (l2, θ2) of the split edge as the two manufacturing
configurations have different bias.

We have A∗re f and A∗test with their means at (0.01, 0.01) and
B∗re f and B∗test with their means at (0.0101, 0.011) in the first case.
The difference in the location of means of A and B is 10−3. In the
second case, the difference in the mean location of A∗re f , A∗test and
B∗re f , B∗test increases to 10−2 as for the same A∗re f , A∗test, the means
of B∗re f , B∗test are shifted to (0.11, 0.11). All distributions in this
category have same standard deviation of 0.05 and a co-variance
of zero in both directions.

Before topological transformation, we observe that the cross
tests give p−values (p∗AB, p∗BA) that are lower than their signif-
icant threshold values in both the cases (Table 1). As a result,
authentication is possible before transformation when the differ-
ence in the mean location of distributions generated from two
different manufacturing configurations is 10−3 or 10−2. How-
ever, after performing topological transformation we notice that
for case one, p−value (pAB, pBA) for both cross tests are same as
their corresponding significance threshold values giving us two
false positive results (Table 1). Similarly, on increasing the differ-
ence in the mean locations for A and B, we get one false positive
and one true negative results as in the second case cross test re-
sult (pAB is greater than the significance threshold for Are f (psA)
and cross test result (pBA) is less than the significance threshold
for Bre f (psB) (Table 1). Thus, when two manufacturing con-
figurations give rise to coordinate error distributions with same
standard deviation but varying mean locations, authentication is
only possible before applying SplitCode.

6.5. Results: Case 3 (µa = µb, σa , σb, σa12 = σb12 , 0)
This category is a variation of the first category. These error

distributions have a different bias than the error distributions in
the first category as they have a non - zero co-variance in both
directions. They form an elliptical shape as oppose to circular
distributions in the first two categories. Similar to the first cate-
gory, error distributions with lower standard deviation here refer
to manufacturing configuration resulting in lesser error.

Here also we consider two cases. For both cases we generate
A∗re f and A∗test with a standard deviation of 0.05. Then we gener-
ate B∗re f and B∗test with a standard deviation of 0.051 in the first
case and 0.06 in the second case respectively. Thus, the differ-
ence in standard deviation of A & B increases from 10−3 to 10−2

as we move from the first to the second case. All error distri-
butions considered in this category have their mean at the origin
and a co-variance of 0.0004.

In the first case where difference in the standard deviation of
A & B is 10−3, the cross test result (p∗AB) is lower than the signif-
icant threshold for A∗re f (p∗sA) but the other cross test result (p∗BA)
is greater than its corresponding significant threshold (p∗sB). As a
result, we get one true negative and one false positive result be-
fore transformation (Table 1). Whereas after transformation, we
get two false positive results as (pAB) is same as (psA) and (pBA) is
greater than (psB). Hence, authentication is not possible before or
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Figure 13: The printed part was placed on a rotating table in a photo studio light
box and multiple images of the part at different orientations are captured.

after topological transformation in this particular case. When the
difference in the standard deviation of A & B increases to 10−2,
not only before transformation but also after transformation all
cross tests give p−values that are lower than their corresponding
significant thresholds (Table 1). We get two true negative results
before transformation as well as after transformation for the sec-
ond case. Hence, when two manufacturing configurations result
in coordinate error distributions that have same bias but a dif-
ference of 10−3 in their precision, authentication is not possible
before or even after application of SplitCode. However, when
the difference in their precision increases to 10−2, authentication
is possible before transformation as well as after transformation.

6.6. Results: Case 4 (µa = µb, σa = σb, σa12 , σb12)
Finally, in the last category we compare two error distribu-

tions with same mean, same standard deviation and different co-
variance, which means that the two manufacturing configurations
associated with these error distributions result in part instances
with same precision but different bias. We consider A∗re f and A∗test
with a co-variance of zero. Then we have another pair of B∗re f and
B∗test error distributions B that have a co-variance of 0.0004 in
both the directions. All four error distributions have their means
at the origin (0, 0) and have a standard deviation of 0.051. In this
case, we have a circular distribution A and an elliptical distribu-
tion B.

On testing A∗re f against B∗test before transformation and Are f

against Btest after transformation we get p−values (p∗AB, and pAB)
that are lower than their corresponding significance threshold
values for A∗re f (p∗sA) and Are f (psA) respectively. Thus, we get
one true negative before transformation, as well as after transfor-
mation (Table 1). When we perform a KS test between B∗re f and
A∗test, we get (p∗BA) lower than the significance threshold for B∗re f
(p∗sB) before transformation (Table 1). Now we have two true
negative results before transformation. However, after transfor-
mation we get a p−value (pBA) which is same as the significance
threshold for Bre f (psB) (Table 1). We consider this result as a
false positive which takes our total to one true negative and one
false positive after transformation. From these results, we can see
that for error distributions with same mean and standard devia-
tion but a difference of 0.0004 in the co-variance, authentication

is possible before transformation but not possible after transfor-
mation.

7. Experimental Validation of Authentication with SplitCode

From the results gathered during numerical simulations, we
understand that the performance and accuracy of SplitCode de-
pends on the nature of relative coordinate error distributions and
the difference between them. We observe that SplitCode enables
authentication in some cases where two reference coordinate er-
ror distributions have same biases but different precision. We
also notice that for certain coordinate error distributions with
different biases, authentication is possible before application of
SplitCode but fails after the topological transformation. To check
if we get similar results for actual manufactured parts, we per-
form some physical experiments using additive manufacturing
process. These experiments provide insight on the nature of pos-
sible coordinate error distributions that one can get for various
printer configurations. In this section, we describe about the ex-
periments conducted in detail and present their results.

For these experiments, we assume that error measured with re-
spect to the CAD model of the design in multiple prints printed
with a given printer configuration, contribute to the reference er-
ror distribution of that printer configuration. Similarly, if we have
a test print printed with an unknown printer configuration, error
measured in the test print gives us the test error distribution.

7.1. Experimental Setup
We first started with 3D printing the parts which were then

imaged, pre-processed, and registered and were used for com-
puting reference and test error distributions. We used three dif-
ferent printers in our experiments. These printers, their slicing
software, and the printing parameters used for fabricating the
parts are reported in Table 7.4. All parts were printed using a
PLA (polylactic acid) filament and imaged using Canon EOS
60D DSLR camera with an EF 17-40mm F/4 USM lens (Fig-
ure 13). In order to remove bias from imaging at a specific part
orientation, each part was imaged 15 times, on an average, after
rotating it by 24°after each capture. Additionally, we utilized a
photo studio light box (Figure 13) to further remove any discrep-
ancies that could be introduced by variation in the lighting and
shadows.

7.2. Design of Parts
We used two types of part designs in our experiments which

are as follows:-

1. Square part with 25 square holes
We designed a square part of dimensions 55x55x1.2mm
with 25 square holes on it (Figure 17). This design was cre-
ated in SOLIDWORKS 2019. The centers of these square
holes were arranged in a 5x5 grid and the length of their
sides were selected randomly from 3mm, 3.5mm, 4mm
4.5mm and 5mm. For this part design, we measured man-
ufacturing error at the vertices of the square holes in the
images of printed parts with respect to their ideal locations
in the CAD image. The error calculated was then utilized to
generate coordinate error distributions.

2. Square part with 25 circular holes
We designed another square part of dimensions
50x50x1.2mm in SOLIDWORKS 2019 which con-
tained 25 circular holes of varying diameters on it. We
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(a) Captured images (b) Pre-processed images (c) Registered images

Figure 14: Images of ideal CAD model and the printed part when a) captured, b) pre-processed and c) registered.

chose five different diameters for the circular holes- 2mm,
2.5mm, 3.5mm, 4mm, and 5mm (Figure 17). The centers
of the holes were arranged in 5x5 grid such that in every
alternate row starting from the first one, the circular holes
were arranged in the increasing order of their diameter
from left to right and in the remaining rows they were
arranged in the decreasing order of the diameters from left
to right. Such an arrangement of holes is chosen to check
if the diameter and the location of hole affects the error in
printing that hole. For this design, we compute error at
the centers of the circular holes in the printed part images
with respect to their ideal locations in the CAD image and
generate coordinate error distributions.

7.3. Image Processing
Given that we captured an average of 15 images per print with

different orientations, we must register each captured image to its
“ideal” CAD image to calculate the deviations and error distribu-
tions (Figure 14). To achieve this, we utilize MATLAB’s Im-
age Processing Toolbox version R2020b 2. First, we pre-process
(Figure 14b) the captured images and the “ideal” render by ap-
plying a global threshold to binarize using Otsu’s method [53].
We then apply a morphological erosion followed by a dilation to
remove noise while maintaining the hole features. Finally, we
align (Figure 14c) each captured image with the “ideal” one us-
ing phase correlation [54] and register them using MATLAB’s
Intensity-Based Automatic Image Registration technique3.

7.4. Error Measurement and Computation of Coordinate Error
Distribution

For parts with circular holes, all holes in both the print image
and the CAD image were detected using circle detection function
(imfindcircles) in MATLAB and each hole in the captured image
of the print is mapped to its corresponding hole in the image
of the CAD model (Figure 15). We then find out the centers
of the two holes. We finally measure the length and angle of
the line joining the centers of the two holes in the printed part
image and CAD image. Thus, we get the errors introduced while
printing that particular hole with a given printer configuration.
In the same manner we compute error for all the 25 holes in all
images of the print and use that to create the coordinate error
distributions of the print. It was observed that parts with circular
holes led to elliptical or circular coordinate error distributions
(Figure 17).

For parts with square holes, a corner detection function (detec-
tHarrisFeatures) was used in MATLAB to detect all the corners

2Available: https://www.mathworks.com/products/image.html
3Overview: https://www.mathworks.com/help/images/ref/imregister.html

of the holes in the captured images. At this stage, multiple factors
come into picture in the error computation process. Firstly, be-
cause of the noise in the captured images, we do not get straight
line edges for the square holes when we process the images in
MATLAB (Figure 16a). As a result, multiple points are detected
in the images by the corner detection function (Figure 16b). We
map all the detected points on the ideal CAD image and find the
points that are closest to the actual corners of the square holes
on the CAD image. An important point to note here is that, be-
cause of the fundamental nature of printing and the thickness of
the printing filament, as the printing direction changes by 90°we
do not get a sharp corner. Instead we get fillets. Secondly, when
we take images of these prints, shadows increase the probability
of detecting a fillet in the location of a corner.

Because of the above two reasons, the points detected by the
corner detection function often lie on the edges that are incident
on the corner (Figure 16c). Naturally, points that are closest to
the corners in the CAD image also lie on one of the two incident
edges. As a result, we get a diamond-shaped (Figure 17) error
distribution for parts with square holes.

7.5. Design of Physical Experiment
In our experiments we focus mainly on the following two

problems:-

1. Application of topological transformation to perform au-
thentication between parts printed on two different printers
(either at same or different speeds).

2. Application of topological transformation to identify
parts printed on the same printer but with different speed
and precision.

In total, we perform three experiments as described below (Fig-
ure 17):-

1. In the first experiment we want to understand if the exag-
geration caused by topological transformation helps in de-
tecting a counterfeited print printed on a printer other than
the authentic printer at the same speed. For this, we print
four prints each of the design with circular holes on the
printers Creality Ender 3 (a1, a2, a3, & a4) and LulzBot
TAZ 6 (b1, b2, b3, & b4). Both the printers print at the
same speed. Three prints from each printer (a1, a2, a3 &
b1, b2, b3) were used to generate the reference error dis-
tribution for the printers and the remaining prints (a4 & b4)
were used as test parts. Here we perform cross tests between
test part printed on LulzBot TAZ 6 (b4) and reference error
distribution of Creality Ender 3 (a1, a2, a3). Similarly, we
also perform a cross test between test part printed on Creal-
ity Ender 3 (a4) and reference error distribution of LulzBot
TAZ 6 (b1, b2, b3).
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Printer Parts Slicer
Layer height

(mm)
Nozzle (bed)

temperature (C)
Perimeter (infill) printing

speed (mm/s)
Infill density

(%)

1. Creality Ender 3 a. 4 parts Cura 4.8.0 0.16 200 (60) 37.5 (75) 100
b. 2 parts 0.16 200 (60) 18.75 (37.5) 100

2. LulzBot TAZ 6 c. 4 parts Cura LulzBot edition 0.16 200 (60) 37.5 (75) 100

3. Prusa i3 MK3S d. 2 parts PrusaSlicer 2.3.3 0.10 210 (60) 40 (80) 100
e. 2 parts 0.07 210 (60) 30 (40) 100

Table 2: Printers, parts, and their printing parameters used for experiments

2. For the second experiment, we use two prints (a1 & a2)
printed at a lower speed on Creality Ender 3 as test prints
and compare them with the four prints (b1, b2, b3, & b4)
printed at a higher speed on LulzBot TAZ 6. Design of
part with circular holes is used in this experiment. First
we perform a KS test between error distributions coming
from the first three prints (b1, b2, & b3) and the fourth
print (b4) printed on LulzBot TAZ 6. This KS test gives
us the significance threshold for the printer LulzBot TAZ 6
at 37.5mm/sec. We then perform a cross test between the
test prints printed on Creality Ender 3 (a1 & a2) and the ref-
erence error distribution of LulzBot TAZ 6 printer generated
from b1, b2, & b3.

3. In the last experiment our goal is to utilize topological
transformation for detecting parts printed on the same au-
thentic printer but at different speeds. To explore this situ-
ation, we wanted to select a design where change in error
specifically due to change in speed could be measured. We
know that when the direction of printing changes, printing
speed plays an important role in maintaining the accuracy of
printing. Hence, we selected the design with square holes
and measured printing error at the corners of the square
holes where the direction of printing changes. We used
printer Prusa i3 MK3S and printed two prints (a1 & a2) at a
lower speed and two at a higher speed (b1 & b2). We first
find the significance threshold of the printer at lower speed
by performing KS test between the error distributions gen-
erated from prints a1 & a2. Later, prints a1 & a2 together
contribute to the reference error distribution of the printer
at lower speed and we perform cross test between the ref-
erence error distribution and error distributions of the prints
printed at a higher speed (b1 & b2).

7.6. Results
7.6.1. Experiment 1

In this experiment, coordinate error distributions for prints
printed on Creality Ender 3 have an elliptical shape (Figure 17).
These error distributions are identical to the distributions with
their mean at the origin and non zero co-variance. Orientation of
the error distributions of these four prints roughly tell us about
the possibility that they are all printed with the same printer con-
figuration. On the other hand, coordinate error distributions of
prints printed on Lulzbot Taz 6 have circular shape (Figure 17).
These distributions can be related to bi-variate normal distribu-
tions with their mean at the origin and co-variance equal to zero.
Thus, this experimental case resembles to the simulated case
where we had one elliptical and one circular reference and test
distribution.

We will consider the Creality Ender 3 as Printer A and the
Lulzbot Taz 6 as printer B. Before transformation we first find
the significance threshold for printer A as 4.14x10−05 and printer

B as 0.0104. With these values as reference, we perform the
cross tests. We get a p value of 10−13 for the cross test between
reference error distribution A and test error distribution B which
is lower than significance threshold of A. For the other cross test
between reference error distribution B and test error distribution
A we get p = 10−12. This value is also lower than the signifi-
cance threshold of printer B. Hence, we clearly get two true neg-
ative results before transformation indicating that test print A is
not printed on printer B and test print B is not printed on printer
A. From these results, we can tell that authentication for this ex-
perimental case is possible without topological transformation.

After topological transformation, we get a significance thresh-
old of 0.0029 for printer A and 0.01 for printer B. On performing
cross test between reference distribution A and test distribution
B we get p = 10−12. Similarly, cross test between reference dis-
tribution B and test distribution A also results in p = 10−12. p
values resulting from both the cross tests are lower than their
corresponding significance thresholds. Hence, we get two true
negative results after transformation too. We can therefore say
that, for this experimental case, authentication is possible both
before and after topological transformation. Hence, if we have
two printer configurations with significant difference in the mean
location of their reference error distributions (significantly dif-
ferent bias), we can statistically compare reference and test error
distributions without performing topological transformation on
them for authentication.

7.6.2. Experiment 2

Error distributions generated in this experiment tells us that
by reducing the speed of printing in a cheaper printer (Creal-
ity Ender 3), it is possible to minimize the difference between
error distributions for prints printed by a cheaper printer and the
prints printed by an expensive printer at a higher speed. Here, the
significance threshold of printer (LulzBot TAZ 6) is 0.0104 be-
fore transformation and 0.01 after transformation. We then com-
pare each of the two test error distributions from prints printed on
Creality Ender 3 with the reference error distribution of LulzBot
TAZ 6. Before transformation, cross test results for the two prints
are p = 10−12 and p = 10−10 respectively. These two values are
lower than the significance threshold value before transforma-
tion. Now after performing topological transformation, we again
perform cross tests between the two test distributions and the ref-
erence distribution and we get p = 0.1733 and p = 4.61x10−07 for
the two test prints. We notice that one of the two cross tests
give us a p value that is greater than the significance threshold
of the reference printer configuration and thus, we get one false
positive result after transformation. Hence, in this case where the
error distributions of two printer configurations vary only slightly
in terms of precision and bias, it is possible to authenticate parts
before topological transformation but not possible after.
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Figure 15: Error distribution is generated by measuring the deviations in the image of the printed part with respect to the rendered ideal CAD image.
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Figure 16: As a combined effect of printing, imaging and pre-processing, corners
of square holes detected in the image of printed part lie on one of the edges
incident on the actual corners in the CAD image.

7.6.3. Experiment 3

In the third experiment, we get a significance threshold of
0.0051 for the prints printed at 30mm/sec on the printer before
transformation. As soon as we get this value, we test the two
prints printed at higher speed (b1 & b2) individually with the ref-
erence error distribution generated from prints printed at lower
speed. When we perform a KS test between print b1 test error
distribution and the reference error distribution, we get a p value
of 0.4277. This value is higher than the significance threshold
for the printer configuration in consideration. For the KS test
between print b2 test error distribution and the reference error
distribution, we get a p value of 0.1671. This test also gives us
higher p value than the significance threshold. Thus, we get two
false positive results as they falsely indicate that prints b1 and b2
are printed with the same printer configuration (speed) as that of
prints a1 and a2. We can say that in this case authentication is
not possible before topological transformation.

After topological transformation, we get a significance thresh-
old of 0.9748 for prints printed at lower speed (a1 & a2). The first
cross test is performed between print b1 test distribution and the
reference distribution. We get p = 0.0946 for this test. Similarly,
we perform a cross test between print b2 test distribution and the
reference distribution. This test gives a p value of 0.00013. Both
the cross tests tell us that the prints b1 and b2 are not printed with
the same printer configuration (same speed) as prints a1 and a2.
Hence, we get two true negative results and a perfect authentica-
tion case after transformation. Thus, in this case of identifying
parts with square holes that have different error distributions due
to being printed at a different speed, topological transformation is
necessary for authentication as authentication fails before trans-
formation.

8. Discussion

8.1. Part Design

In terms of part design, currently we are using centers of cir-
cular holes and corners of square holes for estimating error. We
have already noticed in our experiments that both the geometry
of the hole and the features used for error measurement affect the
nature of error distributions and eventually, authentication. In
future, an interesting problem is to study the effect of different
geometric figures in more detail by selecting figures like trian-
gles, pentagons or hexagons. Experimenting with different fea-
tures such as centroid, edges or midpoints of edges will give us
an understanding on how the estimation of error is affected by
the features at which it is calculated. It is also possible to arrange
geometric figures in various patterns such as in a triangular or
hexagonal grid. Different arrangement of features for the same
part will give different error distributions thus, giving us a more
accurate representation of the precision and bias of printers.

In our current implementation, we demonstrated SplitCode
with 2D features such as circle centers and corners. An exciting
avenue for research is to extend these ideas to 3D shapes directly.
For instance, instead of computing error distributions from pla-
nar features that are always on the top surface of a token part, one
can measure deviations along straight and curved edges that are
spatially distributed on a part. For this, it would also be impor-
tant to compute the topological transformation in 3D space. In
this scenario, the split edge would essentially become a split dis-
crete surface (composed of multiple planar faces). A statistical
representation of this, in itself, is a challenging theoretical and
computational issue that requires a deeper investigation.

8.2. SplitCode Algorithm

There is great scope of exploration within the algorithm of
SplitCode. Our algorithm is based on a simple principle of topol-
ogy change in uniform quad grid structures. Changing this quad
grid to other nonuniform Voronoi grid structure will generate dif-
ferent topologically transformed error distributions and provide
different amount of exaggeration between two error distributions.
In order to increase the sensitivity of topological transformation,
arranging Voronoi sites in a circle is worth trying. Our method
assumes that imprecise tool movement is the only cause of er-
ror in manufactured parts. But in reality, even this error could
be affected by factors like temperature of the surroundings, tem-
perature of the machine bed and raw material quality. In order to
properly measure error only due to inexact movement of the tool,
we could use higher dimensional Voronoi sites like straight lines
or curves. These variations in the SplitCode algorithm will pro-
vide an understanding of which factors affect topological trans-
formation in a positive sense to achieve meaningful exaggeration
between two error distributions.

15



Printer - LulzBot TAZ 6

Speed – 37.5 mm/sec

Printer - LulzBot TAZ 6

Speed – 37.5 mm/sec

Printer – Creality Ender 3

Speed – 37.5 mm/sec

Printer – Prusa i3 MK3S

Speed – 30 mm/sec

Printer – Creality Ender 3

Speed – 18.75 mm/sec

Printer – Prusa i3 MK3S

Speed – 40 mm/sec

Experiment 1 Experiment 2 Experiment 3

Figure 17: In our experiments, we used a combination of five printer configurations to print parts with either circular or square holes, parts with circular holes generated
elliptical error distributions whereas parts with square holes resulted in pyramid-shaped error distribution.

8.3. Statistical Variations

Once exaggeration between two error distributions is achieved,
the tests used for authentication also affect the performance of
authentication. In our work, we use statistical tests that allow
use of only two features of the split edge. Instead of consid-
ering probability of one split edge to check if the reference and
test error distributions belong to the same distribution, using joint
probability of a grid of split edges can prove to be a more descrip-
tive representation of an error distribution and hence, improve the
accuracy of authentication. Use of multiple split edges and mul-
tiple features can be made possible by replacing statistical tests
with machine learning algorithms. Another way to get more re-
liable authentication is to consider location dependent error for a
given part. Because of the hardware imperfections, machine er-
ror can vary from one location to the other. Experimenting with
location dependent error will offer a way to differentiate between
machines that have similar overall error distribution but different
error distributions when compared location wise.

8.4. Methods for Measuring Deviations

Since the process of error measurement in manufactured parts
start with capturing images of the part and processing them, these
processes greatly influence the measured error. As seen in our ex-
periments, image processing and feature detection methods can
even change the shape of the error distribution. Hence, it is im-
portant to correctly detect the features at which error is estimated.
In future, use of better post processing methods for RGB images
will facilitate accurate detection of features. While taking im-
ages, surrounding lights and shadows tend to sway the measure-
ment of error. Implementing different imaging methods like 3D
scans or micro scan can help in eliminating these issues. Finally,
utilizing non imaging techniques like acoustic, vibrations or op-
tics for detecting features and errors is also another way to ensure
that the error measured is solely caused due to machining.

An important note here is that error distributions may or may
not change with different manufacturing processes. Depending
on the shape of error distribution we can modify the SplitCode
algorithm, identify the features that offer maximum exaggeration
of error, use suitable imaging and post processing methods, and
select proper statistical or machine learning tests for authenti-
cation. We should understand here that the overall concept and
technique of authentication remains same for all machining pro-
cesses with some necessary modifications.

8.5. A Note on Computational Complexity

In a real-world setting, the SplitCode procedure would involve
two components, namely, pre-computation of reference distribu-
tion and the actual authentication test. Therefore, the main factor
that will dictate the time taken for our procedure would be dur-
ing authentication, which would involve: (1) imaging (which is
semi-manual), (2) image registration, (3) coordinate error com-
putation using feature detection, (4) topological transformation
using Voronoi edge split, and (5) Kolmogorov-Smirnov (KS)
test for authentication. Image registration and feature detection
methods are now quite standard [55] and can be done for very
large image sizes within fractions of a second, especially with
GPU acceleration [56]. As for the topological transformation, we
note that the error exaggeration based on Voronoi decomposition
essentially samples exactly 4 points for each computation. Given
that the sweep-line algorithm for 2D Voronoi is O(k log(k)) [57],
it is constant in our case since k = 4. Therefore, for a sample
of n points, the time complexity for error exaggeration is simply
O(n). Finally, the complexity of the Kolmogorov-Smirnov for bi-
variate (two-dimensional) data is reported to be O(n2) [58, 59].
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9. Conclusion

We presented a technique to exaggerate differences between
error distributions of two machine configurations based on a
combination of Voronoi Tessellation with statistical analysis.
Our method enables characterization of machine configurations
by characterizing their bias and precision and thereby enables au-
thentication of parts manufactured with them. In contrast to ma-
chine learning approaches, our method is principled (i.e. based
on fundamental geometric reasoning) and does not require any
parameter tuning, and formulates the authentication task in terms
of a single confidence value (p−value).

Experiments showed that when the problem is to identify or
authenticate a part manufactured with a secondary manufacturing
configuration that has a different bias than the part manufactured
with the original manufacturing configuration, authentication is
possible after application of SplitCode. However, when there is
significant difference in the bias of two configurations, authen-
tication could be achieved even without applying SplitCode. In
another scenario wherein there is minor difference between the
bias of two manufacturing configurations, authentication is pos-
sible before applying SplitCode, but it fails after transformation.
On the other hand, in cases where the problem is to identify a part
produced with a manufacturing configuration that varies in preci-
sion, authentication is possible both before and after application
of SplitCode if the difference between the two precision levels is
significant. When the difference between two precision levels is
less, depending on the geometry of features used, authentication
is not possible before but is possible after applying SplitCode.

Although this technique has been experimentally validated
only for 3D printed parts in our work, it is applicable to any
process where some form of error distribution can be obtained
either experimentally or through modeling. Moreover, the tech-
nique could be further used to infuse encoded information in the
form of synthetic machine noise and other means. Given the po-
tential for extension of this technique, we believe that this work
shows initial steps toward a rich research direction in the domain
of manufacturing security and authentication.
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