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Abstract—In this paper, we introduce a framework for the geometric design and fabrication of a family of geometrically interlocking
space-filling shapes, which we call woven tiles. Our framework is based on a unique combination of (1) Voronoi partitioning of space
using curve segments as the Voronoi sites and (2) the design of these curve segments based on weave patterns closed under
symmetry operations. The underlying weave geometry provides an interlocking property to the tiles and the closure property under
symmetry operations ensure single tile can fill space. In order to demonstrate this general framework, we focus on specific symmetry
operations induced by fabric weaving patterns. We specifically showcase the design and fabrication of woven tiles on flat and curved
domains by using the most common 2-fold fabrics, namely, plain, twill, and satin weaves. We further evaluate and compare the
mechanical behavior of the so created woven tiles through finite element analysis.

Index Terms—Space-Filling shapes, 3D Tile Design, Geometric interlocking, Fabric Weave, 3D printing, Computational Fabrication.
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1 INTRODUCTION

1.1 Motivation

Space-filling shapes have applications in a wide range of
areas from chemistry and biology to engineering and ar-
chitecture [1]. Using space-filling shapes, we can compose
and decompose complicated shell and volume structures for
design and architectural applications. Space-filling shapes
that are also tileable, can be further provide an economical
way for constructing structures because they can be mass-
produced. Despite their practical importance, the variety
of 2.5D and 3D space-filling tiles at our disposal are quite
limited. The most commonly known and used space-filling
shapes are usually regular prisms such as rectangular bricks
since they are relatively easy to manufacture and are widely
available. However, reliance on regular prisms, significantly
constrains our design space for obtaining reliable and robust
structures.

A recent approach provides a conceptual framework
for a systematic design of modular and tileable identical
building blocks by significantly extending design space with
Delaunay Lofts [2], and generalized Abeille tiles [3]. In
this conceptual framework, the higher-dimensional Voronoi
sites that are closed under symmetry operations are used to
partition space. Using this framework, it has been possible
produce identical space-filling modular building blocks to

• V. R. Krishnamurthy is are with J. Mike Walker ’66 Department of
Mechanical Engineering and Department of Computer Science and En-
gineering (by Affiliation), Texas A&M University, College Station, USA.
E-mail: vinayak@tamu.edu

• E. Akleman is with the Department of Visualization and Department of
Computer Science and Engineering (by Affiliation), Texas A&M Univer-
sity, College Station, USA. E-mail: ergun.akleman@gmail.com

• S. G. Subramanian and M. Ebert are with J. Mike Walker ’66 Department
of Mechanical Engineering, Texas A&M University, College Station,
USA. E-mail: sai3097ganesh@tamu.edu; matt ebert@tamu.edu

• J. Cui, C. Fu, and C. Starrett are with the Department of Visualization,
Texas A&M University, College Station, USA. E-mail: jiaqi96@tamu.edu;
sqree@tamu.edu; cstarrett@tamu.edu

Manuscript received Month XX, 2020; revised Month YY, 2020.

decompose planar shells such as Delaunay Lofts [2], and
generalized Abeille tiles [3]. One problem with Delaunay
and generalized Abeille tiles is that they are only topo-
logically interlocking [4], [5]. In other words, while these
tiles are assembled simply by placing them next to each
other and therefore cannot be constrained to stay together
without using a peripheral force. In this paper, we present a
new approach for geometrically interlocked tiling.

This paper is an extension of our recently published
work on bi-axial woven tiles [6] where we utilized the
symmetry of fabric weaves to achieve geometric inter-
locking. Specifically, we demonstrate the decomposition of
curved domains into geometrically interlocked space-filling
components and also show that our tiled assemblies are
significantly stronger than their monolithic counterparts.

1.2 Geometric Interlocking

Given an assembly of objects embedded in a given space, we
call the objects geometrically interlocked with each other if
is it impossible to assemble or disassemble them without
applying at least one or more of the following operations:
(1) lifting at the objects up into a higher dimensional space,
(2) deforming at least one object (i.e. applying a non-rigid
transformation), and (3) cutting at least one object into at
least two or more parts. Two relatively obvious examples
that exhibit such a behaviour are a pair of links in a chain
or a box inside another box. However, we show that there
is a vast space of shapes that is not only geometrically
interlocking but also space-filling. As a more relevant exam-
ple, consider a simple jig-saw puzzle embedded in 2-space.
In order to assemble this puzzle together using only rigid
transformation the only choice is to lift the pieces up into
3-space and put them back on the plane. If the movement
of the pieces is restricted to 2-space then the only way to
assemble this puzzle would be to either deform at least one
piece so as to fit it between two other pieces or to cut at
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(a) A set of curve segments
that are closed under sym-
metry operations. The yellow
curve shows the basic element
of the repeating curve segment
for this case.

(b) The curve segments in
a 2.5D fundamental domain,
which is rectangular prism.

(c) Voronoi decomposition of
fundamental domain using
curve segments as Voronoi
sites. Yellow tile in the center
is a space filling tile.

(d) Assembly of space filling
tiles by its replicas. The yellow
tile is removed to show the
inner structure.

(e) Physical assembly of 3D
printed tiles in a different con-
figuration, where flexible dark
green piece plays the role of
locking this configuration.

Fig. 1: The computational pipeline for the geometric design and fabrication of woven tiles is shown. This particular example illustrates
the tiles generated using the plain weave symmetries filling 2.5D space. The Figure 1c shows the curves in fundamental domain. The
yellow curve shows the basic element of the repeating curve segment. All other curve segments in the fundamental domain can be
obtained by rotating and translating this yellow curve. The Figure 1d shows overall assembly by removing the tile that corresponds to
yellow curve. We obtained the shapes of top surfaces also with Voronoi decomposition.

least one piece into at least two or more pieces so that one
may use 2D rigid transformations (two translations and one
rotation) to put them in place.

Interlocking objects have been extensively studied in
several domains of science and engineering including me-
chanics, architecture, and computer graphics. For example,
seminal works by Song et al. show several interesting ap-
plications for interlocking shapes including recursive puz-
zles [7], 3D printing [8] and reconfigurable furniture [9].
Many of these and several other works [10], [11], [12], [13]
are based on the principle of a “key” element that holds
the other parts in place in conjunction with other kinematic
inter-dependencies. In spirit, these are conceptually similar
to the so called topological interlocking shapes where the
key actually facilitates the peripheral force necessary to hold
other pieces together. We also found an interesting concept
for interactive surface design with interlocking elements by
Skouras et al. [14] that demonstrated geometric interlocking
wherein they lock flexible elements through deformation. In
this work, we specifically focus on geometric interlocking as
a complementary idea to topological interlocking that has
been widely explored in graphics and other domains.

1.3 Inspiration & Rationale
Our inspiration for geometric interlocking comes from the
topological concept of links, which are equivalent to mul-
tiple interlocked circles embedded in 3D space. Links are
generalized forms of knots, which are equivalent to a singe
circle embedded in 3D space. We observe that using links
as Voronoi sites to decompose a given volumetric domain
automatically results in geometrically interlocked space-
filling partitioning of the domain. An efficient approach of
modeling links is embedding multi-circles onto discretized
surfaces (polygonal meshes) using extended graph rotation
systems [15]. Such an approach can be implemented by
labeling each edge of a given polygonal mesh using an
integer. Particularly, if the labeling is binary (i.e. every edge
is labeled either 1 or 0) the result is guaranteed to be
either an alternating link [16] or an alternating knot [17]. In

both cases, we obtain what is commonly known as a plain
woven object. One problem with this general approach is
that it is theoretically impossible to obtain weave equivalent
structures (such as twill and satin) other that plain weaves
(alternating links) unless we restrict the polygonal mesh
topology in a specific manner [18], [19]. Although such
mesh topologies have been shown to exist [20], [21], [22],
[23], there is currently no systematic and simple way for
producing regular links on regular meshes except (4, 4, 1),
that is, a regular quadrilateral grid wherein every face is a
quadrilateral and every vertex has a valency of four.

(a) Top view of a weave
with uncolored threads.

(b) Same weave with
colored warp and weft
threads.

(c) Matrix view of the
same weave.

Fig. 2: The fundamental domain of 2-way 2-fold fabrics is a
rectangle and they can be represented as a simple matrix.
The warp threads are colored blue and weft threads are
colored yellow to differentiate the two threads in the final
matrix.

Our approach leverages woven objects based on (4, 4, 1)
regular meshes, which incidentally, are the commonly
known woven fabrics, fabric weaves or 2-fold 2-way fabrics
as catalogued by Grünbaum and Shephard [24]. Here, “2-
way” means that these fabrics are manufactured using two
sets of interlacing strands, called warp and weft, at right
angles to each other (see Figure 2a). The word 2-fold means
there are never more than two strands crossing each other
[16]. Given the focus on geometric interlocking, our main
challenge was to identify a design space of weaves that
covers a large variety of patterns and is simultaneously
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simple to identify and classify.
To address this challenge, we note that fabric weaves

can be viewed as matrices (Figure 2). In fact, the seminal
studies [24], [25], [26], [27] on the mathematical proper-
ties of fabric weaves used this representation to catalogue
fabric weaves. For instance, the most widely used fabric
weaves, namely, genus-1 2-fold 2-way fabrics can simply
be constructed by shifting each row in the matrix by c
units to the right for some fixed value of the parameter c
(Figure 2). In fact, these genus-1 fabrics include the three
most well known fabrics, namely, plain, twill, and satin
that can be represented as a triplet [a, b, c] where each row
with length n consists of a number of consecutive weft
threads and b = n− b number of consecutive warp threads
(Figure 3a). More importantly, Grünbaum and Shephard
further showed that [27] he [a, b, c]-fabrics are guaranteed
to “hang together” if n = a + b and c’s are relatively prime.
We presently constrain our exploration with respect to
this property it will guarantee geometric interlocking of
the tiles resulting from the Voronoi partitioning. Note
that the converse may not necessarily be true, i.e., not
all geometrically interlocking structures may necessarily
correspond to weaves that hang together. This needs to be
studied further and is out of scope of this paper.

The genus-1 isonemal fabrics described by the [a, b, c] no-
tation not only include well-known patterns such as plain,
twill, and satin but also a wide variety of additional bi-axial
weaving patterns (Figure 3b). Among the [a, b, c] patterns,
the pattern is guaranteed to be rotation-invariant for plain,
twill, and satin cases. This is because in plain, twill, and
satin cases, warp and weft patterns are mirrored versions
of each other [24]. Since our goal is to obtain a single tile,
we focus on only plain, twill and satin woven tiles in this
paper. Plain, twill and satin fabric weaves are also known
that they can form strong interlocked structures that can
stay together without a need for external forces [28]. This
particular [a, b, c] characterization, therefore, simplifies the
problem of classifying and analyzing fabric weaves thereby
providing a simple yet powerful means for exposing a large
design space of geometrically interlocking tiles.

(a) Three parameters, a, b and, c, are sufficient to define all of
the important 2-fold, 2-way genus-1 fabrics

Plain: [1, 1, 1] Twill: [2, 2, 1] Twill: [7, 1, 3]

(b) Examples of isonemal genus-1 patterns that can be repre-
sented by three parameters shown in Figure 3a.

Using these properties of the fabric weaves as our
rationale, we investigate constructing tiled assemblies of
geometrically interlocking space-filling shapes that leverage
the thread interlacing process from plain, twill and satin
woven fabrics.

1.4 Summary of Approach

Using the properties of plain, twill and satin woven fabrics,
our approach is to obtain desired curves segments that are
closed under symmetry operations (i.e. applying rigid trans-
formations results in another curve segment that belongs to
the weave). One simplification of these fabrics is that each
curve segment can be chosen to be planar. In addition, we
can define all plain, twill and satin fabric patterns using
only three parameters. For example, for a 2-way genus-1
weave pattern such as a plain weave (Figure 1a), we can
simply embed it in a fundamental domain shaped as a prism
with a square base (Figure 1b). Subsequently, all we need to
do is compute Voronoi decomposition of the fundamental
domain (Figure 1c) resulting in a set of identical space-filling
tiles (one tile shown as yellow in Figures 1c and 1d).

We present a simple method to compute Voronoi decom-
position of fundamental domain with these curve segments.
We first sample each curve segment to obtain a piece-wise
linear approximation. We compute 3D Voronoi decompo-
sition for each sample point. This process gives us a set
of convex Voronoi polyhedra for the same curve segment.
The union of these convex polyhedra gives us desired space
filling tile. We identify simple and robust algorithms to take
union of all convex Voronoi polyhedra that comes from the
same piece-wise linear curve segment. We also developed a
tile beautification process inspired by the fact that the points
of equal distance to a planar surface and a line parallel to
the surface lie on a parabolic cylinder. We add two planar
surfaces that sandwich the control curves from top and
bottom also as Voronoi sites. Resulting Voronoi decompo-
sition automatically provides nice boundaries comprised of
parabolic regions.

To demonstrate our approach, we designed, numerically
analyzed, and fabricated several varieties of woven tiles.
Because of their symmetry properties, these tiles can be as-
sembled in more than a single configuration. Some assembly
structures can even create loops as shown in Figure 1e. For
these cases, we have shown that it is possible to lock the
pieces using one flexible piece.

(a) Initial curves. Each
curve consists of four
segments.

(b) Decomposition ob-
tained by original curves
in 4a.

(c) Exploded view show-
ing two types of woven
tiles.

Fig. 4: The decompositions of half-cylindrical shell using plain
woven tiles.
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(a) Initial curves. Each
curve consists of four
segments.

(b) Decomposition ob-
tained by original curves
in 5a.

(c) Exploded view show-
ing two types of woven
tiles.

Fig. 5: The decomposition of half-cylindrical shell using plain
woven tiles.

1.5 Our Contributions
Our overarching contribution in this work is a general
conceptual framework for generating space-filling and inter-
locking tiles based on the fundamental principles of fabric
weave patterns in conjunction with space decomposition
using 3D Voronoi partition. Based on this framework, we
make four specific contributions as listed below:
1) We use our general framework to develop a simple and

intuitive methodology for the design and construct wo-
ven tiles, space-filling tiles derived from the symmetries
induced by woven fabrics.

2) We introduce a simple and effective algorithm for ap-
proximating the Voronoi decomposition of space with
labelled curve segments as the Voronoi sites. The algo-
rithm uses a simple process that first discretizes a curve
segment into a sequence of points and then constructs a
Voronoi cell of the curve simply by computing the union
of constitutive Voronoi cells for each point on the curve.

3) We systematically study our approach by generating sev-
eral cases of woven tiles on flat as well as curved domains.
We also demonstrate techniques for the fabrication and
assembly these tiles for the flat domain with a variety of
materials (plastic, wax, and metal) by using different 3D
printing, molding, and casting techniques. Furthermore,
we demonstrate that these tiles can be assembled more
than single configuration. From the same group, it is even
possible to obtain two assemblies with different chirality
(i.e. mirrored versions of each other).

4) Finally, we present a comprehensive structural evalua-
tion of plain, twill, and satin tile assemblies for different
domain shapes including flat, cylindrical, bi-quadratic,
and saddle. The finite element failure analyses of these
assemblies showed that our assemblies allow for localiz-
ing failure. This strongly reinforces the idea of toughen-
ing by fragmentation in mechanics literature [4].

1.5.1 Extended Work:
In this extended version of our previously published
work [6], we demonstrate the application of our approach
on non-planar fundamental domains, specifically half and
full cylinders (Figures 4 and 5 respectively), for each of the
three weave patterns (plain, twill, and satin). The cylindrical
case, unlike our previous planar examples, exposed a new
relationship between the alignment of the Voronoi sites (i.e.
weave curves) relative to the principal curvature directions
of the domain and chirality of the resulting woven tiles.
This extension to cylindrical surfaces also sheds light on

the potential relationship between principal curvature and
the number of distinct tiles possible (Section 4.4). We have
also extended the work to curved domains that are homo-
morphic to rectangular prisms. These domains are defined
by using height functions and they may not necessarily be
fundamental domain. Therefore, we do not necessarily have
single tile solutions. To achieve this, we further extended our
original space decomposition algorithm from [6] to handle
curved domains (section 3.3). We systematically study the
effect of different geometric features through examples of
curved domains (section 4.1). We present a completely new
FEA analysis (Section 5) to assess the amount of load to
cause failure in our assemblies for flat as well as several
curved domains. Our results (the maximum force needed to
cause failure) with respect to the ground truth (a monolithic
structure) demonstrate the viability of our approach for
some future applications to design and manufacturing.

2 RELATED WORK

History is rich with examples of puzzle-like interlocking
structures, which is analyzed under the names such as
stereotomy [29], [30], [31], Leonardo grids or nexorades
[32], [33], [34] and topological interlocking [4], [35], [36],
[37]. One of the most remarkable examples of interlocking
structures is the Abeille flat vault, which is designed by
French architect and engineer Joseph Abeille [3], [38], [39].
Our work is similar to Leonardo grids, which are also called
the nexorades, are types of structures that are constructed
using notched rods that fit into the notches of adjacent rods
resembling fabric weaves [40], [41]. Unlike Leonardo grids,
our structures are also space filling. In other words, their
assemblies forms decomposed monolithic blocks.

Space filling polyhedra, which can be used to tessellate
(or decompose) a space [24], are defined as a cellular struc-
ture whose replicas together can fill all of space watertight,
i.e. without having any voids between them [1]. While 2D
tessellations and 2D space filling tiles are well-understood
[24], problems related to 2.5D and 3D tessellations and
tiles (i.e. shell and volume structures respectively) are still
perceived as difficult. It appears that Delaunay’s original
intention for the use of Delaunay diagrams was to obtain
space filling polyhedra using points that are closed un-
der symmetry operation as Voronoi sites, which he called
Stereohedra [42], [43]. As mentioned earlier, recent work
on Delaunay Lofts and Generalized Abeille Tiles use higher
dimensional Voronoi sites to obtain more complicated space
filling structures [2], [3]. Allowing any type of shapes as
Voronoi sites not only enables a systematic search of desired
shapes from large number of potential candidates, but also
provides a simple design methodology to construct space
filling structures.

Based on this point of view, the key parameters for
the classification of space-filling shapes are essentially the
topological and geometric properties of Voronoi sites and
their overall arrangements that are usually be obtained by
symmetry transformations (rotation, translation, and mir-
ror operations). The types of shapes and transformations
uniquely determine the properties of the space decompo-
sition. Now, based on this view point, let us again look at
Stereohedra, Delaunay lofts and generalized Abeille tiles.
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For Stereohedra, the shapes of Voronoi sites are points,
3D L2 norm is used for distance computation, underlying
space is 3D and any symmetry operation in 3D are allowed
[42], [43]. Based on these properties, we conclude that Stere-
ohedra can theoretically represent every convex space filling
polyhedra in 3D. Since the points are used as Voronoi sites
and L2 norm is used, the faces must be planar and edges
must be straight in the resulting Voronoi decomposition of
the 3D space.

For Delaunay lofts, on the other hand, the shapes of
Voronoi sites are curves that are given in the form of
x = f(z) and y = g(z), for every planar layer z = c
where c is a real constant, a 2D L2 norm is used to com-
pute distance, underlying space is 2.5 or 3D and only 17
wallpaper symmetries are allowed in every layer z = c [2].
Based on these properties, we conclude that Delaunay lofts
(1) consists of a stacked layers of planar convex polygons
with straight edges, and (2) in each layer there can be only
one convex polygon. In Delaunay lofts the number of sides
of the stacked convex polygons can change from one layer
to another. In conclusion, the faces of the Delaunay lofts are
ruled surfaces since they consist of sweeping lines. Edges
of the faces can be curved. For generalized Abeille tiles,
Voronoi sites can be ruled surfaces or tree-structures, which
can significantly extend design space [3]. However, they do
not provide geometric interlocking property.

3 DESIGN MODELING METHODOLOGY

For bi-axial woven tiles in this paper, the shapes of Voronoi
sites are curve segments obtained by decomposing planar
periodic curves that are given -essentially1- in the form of
z = F (x + n) = F (x) and z = G(y + n) = G(y), where
n = a+ b the period of fabric, where F can be any periodic
function as far as it consists of a-length up regions and b-
length down regions as shown in Figure 6. The function G
is just the mirror of F with a-length down regions and b-
length up regions. The curve segments are obtained from
these two periodic functions by just restricting its domain
into a region such as (x0, x0 + kn]. These curve segments
are closed under symmetries of bi-axial weaving patterns,
that are given by 900 rotation and translation operations.
3D L2 norm is used for distance computation. Underlying
space is normally 2.5D, i.e. a planar shell structure [44].

Based on these properties, it is clear that the resulting
tiles would usually be genus-0 surfaces with curved faces
and edges. Because of its bi-axial property, the fundamental
domain for these tiles would always be a rectangular prism,
an extruded version of the original rectangular fundamental
domain of corresponding 2-way 2-fold fabric [45]. Therefore,
the tiles that perfectly decompose this rectangular prism
domain will also fill all 3D space. Our woven tile design pro-
cess consists of three steps: (1) Designing curve segments;
(2) Designing 3D configuration of the curves segments to be
used as Voronoi sites; and (3) Decomposition of the space
using Voronoi tessellation. For all steps, we have used the
simplest approaches which simplify the design process and
provides robust computation.

1. We actually use parametric curves. This is only for providing a
quick and simple explanation without a loss of generality

(a) For
[1, 1, 1].

(b) For [2, 2, 1] twill weav-
ing.

(c) For [2, 2, 1] twill weav-
ing.

(d) For
[1, 1, 1].

(e) For [7, 1, 3] satin weaving.

Fig. 6: Examples of plain, twill and satin woven tiles ob-
tained using basic degree-1 NURBS curves. Each curve is
created by changing positions of 11 control points. The
figures at the top are actual curves. The middle figures are
points that are created by sampling the initial curves. These
points that approximate the curves are used as Voronoi sites.
The figures at the bottom are woven tiles that are created
using sample points as Voronoi sites.

3.1 Designing Curve Segments

We designed our control curves by using Non-Uniform
Rational B-Splines (NURBS). We initially allowed the higher
degree curves to allow C1 and C2 continuity, but, quickly
realized that piecewise-linear curves are sufficient to obtain
desired results for bi-axial woven tiles. Therefore, we de-
signed all curves with degree-1 NURBS. For all cases, we use
the same 11 control points. We simply move the positions of
the control points to obtain the curve segments for desired
weaving pattern as shown in Figure 6. To construct these
curves, in addition to three weaving parameters, i.e. a, b, and
c, we provide one additional control: the angle of connection
of two consecutive tiles. By changing the angle we can
obtain Square Waves, which appears to be binary function
such as the ones shown in Figures 6a and 6b, and Partly
Triangular Waves, which appears to be regular piece-wise
linear such as the ones shown Figures 6d, 6c and 6e. The
two consecutive tiles produced by square waves can sit at
the top of each other as shown in Figures 6a and 6b. With
partly triangular tiles, we can adjust this angle as shown in
Figures 6d and 6c and 6e.

3.2 Designing Voronoi Sites

Based on three weaving parameters, i.e. a, b, and c, we have
developed an interface to create 3D curve segments that are
closed under symmetry operations of 2-fold 2-way genus-1
fabrics. The algorithm consists of three stages as follows:
1) Create initial curve segment as x = Fx(t), y = 0 and z =

Fz(t) based on a and b values, and curve type. Without
loss of generalization, assume t ∈ [0, 1], z ∈ [0, 1], and
x ∈ [−n/2, n/2]. Note that n = a+ b = Fx(1)− Fx(0).

2) Create two replicas of the curve and translate them along
the x axis by adding and subtracting its period n = a+ b
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(a) Basic curve seg-
ment in 3D for [1, 1, 1]
plain weaving.

(b) Overall configura-
tion for decomposition
of rectangular prism
domain.

(c) Union of sur-
rounding curves pro-
vides mold structure.

Fig. 7: An example for designing control curves for [1, 1, 1]
plain woven tiles.

(a) Basic curve seg-
ment in 3D for [2, 2, 1]
twill woven tiles.

(b) Overall configura-
tion for decomposition
of rectangular prism
domain.

(c) Union of sur-
rounding curves pro-
vides mold structure.

Fig. 8: An example for designing control curves for [2, 2, 1]
twill woven tiles.

(a) Basic curve segment in 3D for
[7, 1, 3] satin woven tiles.

(b) Overall configuration for de-
composition of rectangular prism do-
main.

Fig. 9: An example for designing control curves for [7, 1, 3]
satin woven tiles.

respectively. This creates three copies of initial curve that
follows each other.

3) Create two replicas of of these three curves. Translate
one of them using (c, 1, 0) vector and translate the other
(−c,−1, 0). This translation operation must be done in
modulo 3n.
• Remark 1: This operation creates a 3n×2×1 rectangu-

lar prism domain, which is sufficient to compute tiles.
Note that we assume the height of the curves is 1 unit.

• Remark 2: This rectangular domain is not a funda-
mental domain of the curve symmetries. It is only
applicable for genus-1 case.

4) Create perpendicular curve segments.
5) Remark 3: Perpendicular curve segments are guaranteed

to be the same for plain, twill and satin. Therefore, we
only focus on these to obtain single tile.

In practice we create these curves in a larger rectangular
domain as shown in Figures 7, 8, and 9 to see the structure
of the curves better. These rectangular domains must be
larger than the 3n × 2 × 1 domain we described earlier to
guarantee we obtain at least one tile that can fill the space.
In other words, at least one curve must be covered with

its neighboring curves to guarantee that the Voronoi region
that corresponds that particular curve segment fill the space.
In Figures 7, 8, and 9, which shows two plain, two twill
and one satin cases, the center curve is colored yellow. We
have implemented this interface by using SideFX’s Houdini,
which is a robust 3D software that provides a node-based
system for fast and easy interface development.

3.3 Decomposition of the Space

Accurate decomposition of a given rectangular prism using
continuous curves as Voronoi sites can be computationally
complicated. We have developed a simple method that pro-
vides us reasonably good approximation of decomposition
of domains using discrete approximation of the curves. We
further extend our original algorithm [6] to handle domains
that are homomorphic to rectangular prisms. Our algorithm
consists of seven stages:
1) For a given weave symmetry, generate the control curves

in the rectangular prism domain. Ensure that the con-
trol curves are completely immersed within the prism
domain. This step is necessary to guarantee resulted
Voronoi regions are connected.

2) Map the rectangular prism domain onto a desired do-
main and apply the mapping to the original control
curves.
• Remark 0: Since we ensured that our original curves

were immersed in the rectangular prism domain, the
mapped curves will naturally remain immersed in the
desired domain thereby ensuring connected compo-
nents.

3) Sample the control curves by obtaining the same number
of points for each curve segment.

4) For (optional) beautification step, sample boundary of
the domain and use it as an additional Voronoi site. In
the case of plane sample two sandwiching (or bounding)
planes. If not, skip this step. All the examples in this
section are created using this step. However, none of the
curved domain examples in section 4.1 use beautification
step.

5) Label points as follows:
• The points that are originated from the same curve are

labeled using the same label, an integer larger than 0,
say i.

• Remark 1: If the beautification step is used, the
points coming from bounding surface (the sandwich-
ing planes in rectangular prism case) are labeled 0.

6) Decompose the space using 3D Voronoi of these points,
which gives us a set of labeled Voronoi regions, which
are labeled convex polyhedra.

7) Take union of all Voronoi regions with the same label to
obtain desired space filling tiles. Union operation consists
of only face removal operations as follows:
• Remove the shared faces of two consecutive convex

polyhedra coming from two consecutive sample points
on the curve.

• Remark 2: These faces will always have the same
vertex positions with opposing order.

• Remark 3: If underlying mesh data structure provides
consistent information, this operation is guaranteed to
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(a) An assembly of twill, [2, 2, 1]. (b) An assembly of satin, [7, 1, 3].

Fig. 10: Examples of assemblies that show only the tiles cut
to stay in rectangular domain.

(a) [1, 1, 1]. (b) [1, 1, 1] tile. (c) A twill, [2, 2, 1],
woven tile.

Fig. 11: Examples of assemblies with uncut tiles .

provide a 2-manifold mesh. Even if the underlying
data structure does not provide consistent information,
the operation creates a disconnected set of polygons
that can still be 3D printed using an STL file.

• Remark 4: If beautification step is used, ignore polyhe-
dra labeled 0, since those define the outside region.

• Remark 5: If the beautification step is skipped, i.e.
boundary surface of the domain (two sandwiching
planes in planar case) is not used as Voronoi site, take
an intersection with the domain (with bounding rect-
angular prism for planar case). Stage 1 guarantees that
intersection operation does not produce disconnected
Voronoi regions.

We have implemented this stage in both in Matlab and
Houdini. For 3D Voronoi decomposition of points, we used
build in functions available in Matlab and Houdini.

4 RESULTS: GEOMETRIC EVALUATION

The geometry and topology of weaves has a rich research
history with several open questions relating to the ability
of the weaves to hold together. The works by Grunbaum
et al. [24] assume that the threads being woven are in-
finitely long. This, obviously is not the case with woven
tiles, making it more difficult to completely and formally
characterize the assembly of woven tiles. Therefore, we have
evaluated woven structures for two types of domains: (1)
curved domains, and (2) planar domains. We evaluated both
types of domains for three types common weaving patterns,
namely plain, twill, and satin.

4.1 Woven Tiles on Curved Domains
We have shown earlier that woven tiles can be created
in a planar domain with control curves designed directly
based on the weave symmetry (Figures 10 and 11). To
obtain curved domains, we directly extended this method-
ology by mapping the control curves onto domains that

are homomorphic to rectangular prisms such as cylindri-
cal shells or shells given by height fields, in the form of
f(x, y) − a ≤ z ≤ f(x, y) + a, where a is a positive
real number. To demonstrate this idea, we have created a
variety of bi-axial woven structures with curved geometry
(for examples see the four decomposed curved domains
in Figure 12). In all of these four curved domains and
12 cases, we used mapped control curves as Voronoi sites
to decompose given curved domains. All examples of bi-
axial woven tiles in curved domains are created without
beautification step.

The three cylinder cases, which are shown in Fig-
ures 12a, 12b, and 12c, are obtained by bending the plain,
twill and satin control curves along a particular axis. This
also provides = an example of zero Gaussian curvature with
one non-zero principle curvature. For all the other cases, we
used height fields. For bulging cases, which are shown in
Figures 12d, 12e, and 12f, we used a bi-quadratic function
f(x, y) = (x+1)(x−1)(y+1)(y−1) = x2y2−x−y+1. This
makes the boundaries (that are formed by lines x+1, x− 1,
y+1 and y−1) to be fixed at z = 0 and the central region to
have a positive Gaussian curvature. For the three concave-
convex cases, which are shown in Figures 12g, 12h, and
12i, we used a combination of two bi-quadratic functions
to show inflexion where the curvature transitions from
positive to negative. For the three saddle cases, which are
shown in Figures 12j, 12k, and 12l, we used a hyperbolic
paraboloid function in the form of z = x2 − y2 to obtain
a domain with negative Gaussian curvature with saddle at
x = y = 0.

4.2 Woven Tiles in Planar Domains
For planar domains, our first evaluative step was to fabricate
and physically assemble with the goal to explore how the
symmetries induced by these patterns affect the method of
creating assemblies of the respective tiles. We are particu-
larly interested in two aspects of woven tile assembly: (a)
locking ability which maps to the holding-together property
of the weaves and (b) chiral configurations of woven tile
assemblies.

All examples of bi-axial woven tiles in planar domain are
created using beautification step. We have printed the tiles
using both standard resin and elastic resin. For the purpose
of investigation of various material properties and potential
manufacturing options we made rubber molds of the tiles
for casting silicon rubber and wax versions. The wax tiles
were used to cast aluminum tiles via the lost wax casting
process.

4.3 Locking Ability of Woven Tiles
The topology of a weaving pattern directly affects the lock-
ing ability of its corresponding woven tile. For instance,
plain weave tiling results in self-locking configurations (Fig-
ure 13) identical to a plain woven fabric. Therefore, if zero
tolerance is assumed, plain woven tiles cannot theoretically
be assembled together with tiles constructed out of rigid
materials such as PLA or Aluminium. In the 2 × 2 plain
woven tile assembly shown in Figure 13a , one of the
two black tiles (also the dark green tile in Figure 1e) is a
compliant tile made of silicone, constructed through casting.
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(a) A cylindrical domain decomposed by bi-axial
plain woven tiles.

(b) The same cylindrical domain decomposed by
bi-axial twill woven tiles.

(c) The same cylindrical domain decomposed by bi-
axial satin woven tiles.

(d) A bi-quadratic domain decomposed by bi-axial
plain woven tiles.

(e) The same bi-quadratic domain decomposed by
bi-axial twill woven tiles.

(f) The same bi-quadratic domain decomposed by
bi-axial satin woven tiles.

(g) A concave-convex domain decomposed by bi-
axial plain woven tiles.

(h) The same domain decomposed by bi-axial twill
woven tiles.

(i) The same domain decomposed by bi-axial satin
woven tiles.

(j) A saddle domain with maximum and minimum
decomposed by bi-axial plain woven tiles.

(k) The same saddle domain decomposed by bi-axial
twill woven tiles.

(l) The same hyperbolic paraboloid domain decom-
posed by bi-axial satin woven tiles.

Fig. 12: The curved domains that we have decomposed by using woven tiles. Note that in these decompositions, it is not
possible to obtain single tile solution.
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(a) Individual plain
tiles.

(b) Plain tile pairs. (c) Complete assembly.

Fig. 13: Assembly of plain woven tiles. One of the black
pieces is a flexible silicone piece and is needed to success-
fully assemble plain tiles.

(a) Individual
twill tiles.

(b) Twill pairs. (c) Twill assem-
bly.

(d) Twill assembly
with one repetition.

Fig. 14: Assembly of twill woven tiles.

This assembly is structurally stable and the geometry of the
elements itself holds the structure together. Specifically, both
the assembly and disassembly of the plain woven tiling is
possible only through the application of force. In addition to
introducing a flexible element, we also experimented with
all four pieces cast in wax as well as Aluminium. In this
case, the shrinkage in the individual pieces allowed for the
tiling to be assembled.

In case of twill weaves, we do not encounter the locking
problem. As seen in Figure 14, the twill assembly can be
simply created by an alternating placement of tiles along
each of the axis (the white and blue tiles represent each axis).
Therefore, neither the assembly nor disassembly require any
application of force and we did not need any flexible pieces

(a) Individual
satin tiles.

(b) Lower assem-
bly of satin tiles.

(c) Complete
satin assembly
(view 1).

(d) Complete
satin assembly
(view 2).

Fig. 15: Assembly of satin woven tiles.

(a) Chiral pairs of plain
woven tiles cannot be as-
sembled.

(b) Pairs belonging to
the same chiral group
can be assembled.

(c) Plain woven assem-
bly of two chiral groups.

Fig. 16: An example of chirality in plain woven tiling of a
flat domain.

Grid Criss-cross

Fig. 17: Two parametrizations of the cylinder that were used
to generate woven tiles. In case of the grid, we obtain two
distinct tiles of different shapes (Figure 4). In case of criss-
cross, we obtain two tiles that are chiral, i.e. mirror images
of each other (Figure 5).

for twill (Figure 14c). There are two observations we make
here. First, in the plain woven tiling, exactly half of each tile
is above one adjacent tile and the other half is underneath
a second adjacent tile. Second, in case of twill assembly, the
unit tiles do share this alternate above-underneath relationship
with their neighbors. However, note that if two twill woven
tiles are combined to create a double-length tile (Figure 14d),
we obtain the above-underneath relationship that will likely
produce a perfectly interlocking tiling (thereby needing
flexible tiles akin to the plain-woven case).

In case of satin weaves (Figure 15), we come to similar
conclusions — there is a minimal number of repetitions of
each tile to ensure a tightly packed interlocked assembly.
While we can say for certain that the number of repetitions
must be higher than twill, we currently do not claim what
the number of repetitions should be. We believe that much
work needs to be done in order to develop a formal theory
for locking ability of woven tiles.

4.4 Chirality and Number of Distinct Tiles

A chiral object is one that is non-superposable on its mir-
ror image. Chirality is a fundamental to several natural
phenomena and engineering applications.Penne’s work on
planar layouts [46] provides a formal explanation to this
property by connecting projective geometry and topology.
We present two examples to explore the notion of chirality.
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We also note that this notion may be linked to the number
of distinct tiles for a given woven tiling of a domain.

Our first example that explores chirality is the plain-
woven assembly wherein we observed that assembling the
same plain-woven tiles in mirrored configurations leads to
chiral assemblies (Figure 16). In this case, the individual tiles
themselves are identical and chirality manifests itself on in
the way these tiles are assembled. This, however, is not the
case with our cylindrical cases (Figures 4 and 5).

In the cylindrical cases, we used two different ways of
aligning the Voronoi sites (Figure 17): (1) grid along the
principal curvature lines (along the axis and circumference
as shown in Figure 4) and (2) criss-cross at a 45o angle to
the grid parametrization. In case of the grid, we obtain two
distinct tiles of different shapes (Figure 4). The criss-cross
parametrization results in a more interesting result. Here,
we obtain two tiles that are chiral, i.e. mirror images of
each other (Figure 5). This can be attributed to the mirror
symmetry of the parameter lines and their lack of rotational
invariance for the criss-cross case.

These observations indicate a deeper connection be-
tween surface parametrization, the number of distinct tiles,
as well as chirality between the tiles. In fact, we con-
jecture that the only case when we will obtain a single
unique space-filling tile is the planar domains because
of zero-curvature and a rotationally invariant (4,4,1) grid
parametrization.

5 RESULTS: STRUCTURAL EVALUATION

Our structural evaluation of woven tiles is based on the
principle of toughening by fragmentation [37] that was
originally utilized in the context of the mechanics of topo-
logical interlocking materials. The basic idea is that the
toughness (the ability of a material to absorb energy and
plastically deform without fracturing) of a monolithic ma-
terial can be significantly enhanced if cracks are introduced
strategically into the material. This is particularly relevant
for us because our woven tile assemblies are space-filling,
i.e. they consume the same volume as a monolithic block
of the same geometry and dimensions. Therefore, our ap-
proach can be viewed as a means for fragmenting a mono-
lithic solid at strategic locations as prescribed by the weave
symmetries.

In order to understand whether our tiling could result in
structurally better alternatives to monoliths, we conducted
a series of Finite Element Analyses (FEA). Our specific
objectives were to (1) measure the maximum amount of
force before failure in our tiled assemblies in comparison
with and (2) to measure the average stresses for the max-
imum load so as to better understand long term global
failure as well. Finally, we also wanted to characterize the
behaviour of different weave patterns for a given domain.
To achieve these objectives, we conducted failure analysis
on four different types of shapes, namely, flat, saddle, half-
cylinder, and bi-quadratic across the three weave patterns
(plain, twill, and satin).

5.1 Assumptions & Preparation
We used the assemblies generated using our extended al-
gorithm (Figure 12) in our analysis. Note that the thickness

of the domain is kept consistent across all geometries. We
also generated a monolithic geometry for each of the do-
mains that we explored. The dimensions for a given domain
across the weave patterns was also made identical for fair
comparison. All the peripheral boundaries of every tiled
assembly was fixed to the ground. In our analyses, we used
structured steel as the material of choice for a simple reason
that it is ductile, follows Hooke’s law (exhibits linear elasticy
before plastic deformation). The values of assumed Young’s
Modulus is 2e+11 Pa, Poisson’s Ratio is 0.3, Bulk Modulus
1.6667e+ 11 Pa, Shear Modulus 7.6923e+ 10 Pa and Yield
Strength is 2.5e+ 08 Pa.

All the geometric modeling and pre-processing of the
assembly were performed in Houdini FX 18.0.566. For each
of the individual geometries obtained from the Voronoi de-
composition for the thread of control curves, two operations
were performed to prepare the assembly for simulation.
One, the mesh is offset by a very small amount (about
0.001 units) to ensure that there are no self intersections.
Two, the geometry is re-meshed to a specific target size,
this process decreases file size and simulation time. All
individual geometries are saved together in one STL file.
This STL file is imported into SolidWorks 2020 to convert
into a STEP file for simulation.

5.2 Evaluation Methodology
We used the ANSYS Workbench 2020 R1 for conducting
the static structural analysis for all simulations. The STEP
files were imported as solids into ANSYS and the tol-
erance setting identifies and creates contacts in between
the geometries. These contacts would serve as a means of
transferring forces across the individual pieces. All contacts
were assumed to be friction-less. This ensures the forces
being transferred between adjacent tiles are purely due to
geometry and not the friction forces.

Our main objective was to compare the force required to
cause the local failure of the assembly. In our case, failure is
defined as the condition when the maximum value of Von
Mises stress at any given point on any of the elements of the
assembly equals the yield strength of the given material (the
stress at which the material undergoes plastic deformation).
In order to simulate this condition for a given tiling, we
started with a force of 1.0 × 106 N force and gradually
increased the force until the maximum observed stress in
the assembly reached the yield strength. The force and the
values of the average stress, strain, and the location of the
max stress region in the assembly were recorded for all the
simulations (Table 1).

5.3 Key Findings
First and foremost, we observe that the maximum force be-
fore local failure is greater in the monolithic case regardless
of domain and weave pattern (Table 1). This is expected
since any fragmentation or crack in a monolithic solid is
known to reduce the static structural strength. However, the
stresses along the first and second principal directions (see
Appendix) indicate a reasonably uniform (non-localized)
distribution of loads across the woven tile assemblies. While
not through direct evidence, this connects to the idea of
toughening by fragmentation. Based on this, we suspect that
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Fig. 18: Von-Mises stress distributions and deformation of assemblies of plain (left), twill (second to left), satin symmetries
under normal loading compared with monolithic block of equivalent size. The assemblies are based on threads constructed
out of multiple tiles. The first row shows for a flat case, the second has a deformed volume with a saddle point, the third
is deformed to be a half cylinder, and the fourth is bi-quadratic. Each deformed volume contains assemblies of 12x12 cells
except the half cylinder which has 10x12 cells.
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Flat Half-cylinder
Plain Twill Satin Monolithic Plain Twill Satin Monolithic

Max. Force. (N) 1.2× 106 5.3× 105 5.8× 104 2.4× 106 1.2× 105 1.4× 105 1.9× 105 5.2× 106

Avg. Sterss. (MPa) 26.9 12.9 3.3 47.8 4.3 5.2 4.6 42.00
Avg. Disp. (mm) 1.7× 10−1 8.1× 10−2 6.9× 10−2 2.1× 10−2 9.1× 10−2 9.3× 10−2 5.7× 10−2 6.8× 10−2

Max. Disp. (mm) 1.8 1.4 1.8 0.9 1.7 1.9 1.9 0.5
Saddle Bi-quadratic

Plain Twill Satin Monolithic Plain Twill Satin Monolithic
Max. Force. (N) 2.2× 106 1.1× 106 1.5× 105 2.9× 106 1.7× 105 1.2× 105 1.2× 105 5.5× 106

Avg. Sterss. (MPa) 30.0 16.2 19.6 33.6 3.8 2.9 2.4 51.47
Avg. Disp. (mm) 1.8× 10−1 9.5× 10−2 1.1× 10−1 6.7× 10−2 3.9× 10−2 3.5× 10−2 2.2× 10−2 9.3× 10−2

Max. Disp. (mm) 1.7 1.3 1.6 0.4 0.7 0.8 0.7 0.70

TABLE 1: This tables lists the maximum load before failure, average stresses and displacements, and maximum displace-
ments for different domains and weave patterns.

(a)

(b)

(c)

Fig. 19: These are the steps involved in pre-processing the
threads for doing Finite Element Analysis. (a) is the thread
that is obtained from the Voronoi decomposition, (b) is the
mesh after offsetting the body to obtain a isosurface and (c)
is the final output mesh that we obtain by remeshing the
mesh from offset

woven tiles will be good candidates for applications that
require energy absorption.

We observe some interesting dependencies of the force
required for failure and the curvature of the domain as well
as the type of weave. In case of flat and saddle geometries
(i.e., curvature ≤ 0), plain weaves permit the highest value
of force needed for failure (1.2×106 N for flat and 2.2×106

N for saddle). Not only that, the forces are also closest to the
monolithic case when compared to other weaves indicating
higher structural strength of plain weaves. In case of the
cylinder and bi-quadratic domains (i.e., strictly positive cur-
vature), woven tiles have notably lower structural strength.
It is interesting to see that satin weaves permit highest
force for failure in case of half-cylinder when compared
with plain and twill. We also note that the magnitude of
average stress induced is higher for the monolithic case
across all domains and weaves. This is because the monolith
case allows force to dissipate through the whole material
while the weaves only transfer force through the threads
interaction with other threads.

For a given domain, we did not observe much differ-
ence (relatively) in the maximum force before failure across
different weave patterns. Even so, of all the domains, the bi-
quadratic domain captured this property particularly well
with the least amount of variation across weaves. In fact it
also exhibits the least average stress (3.8 MPa) followed by
the half-cylinder (4.3 MPa). Based on the geometry of the
domain, that was expected.

A qualitative comparison of the stress distribution (Fig-
ure 18) clearly showed that the stresses were localized to
only one or two threads that take the load completely
regardless of the type of weave. However, we observe
differences in how this localization occurs or different
domains and weaves. Specifically, both plain and twill
weaves distribute stress in a bi-directional manner (i.e.
across two threads along different axes). On the other hand,
satin predominantly exhibits a uni-directional distribution
of stresses. What is also interesting to note is that plain
tiling in the flat domain is, by, far, most similar to it’s
monolithic counterpart. This can be explained by a larger
value of parameter a for satin — thus having more number
of consecutive weft threads and restricting the potential
transfer of forces to adjacent threads.

6 DISCUSSION

The work presented in this paper provides (1) many new
directions that need to be explored further; and (2) many
interesting questions that need to investigated further. In the
rest of this section, we discuss some of the future directions
to explore and some of the questions to investigate.

6.1 Generalization based on Knots and Links

2-fold fabric structures are much richer than just 2-way
genus-1 fabrics. Their real power can be best understood
with extended graph rotation systems (EGRS) that was
introduced in early 2010’s [16], [47]. EGRS allows us to use
orientable 2-manifold meshes as guide shapes to represent
knots and links. The guide shapes help us to classify the
fabrics. For instance, the guide shapes for 2-fold 2-way
fabrics are regular grids embedded on genus-1 surfaces. For
2-fold 3-way fabrics, we need regular hexagonal or regular
triangular grid embedded on genus-1 surfaces [16]. This is
useful since some of the Leonardo grid designs are based on
also 3-way woven patterns [41]. Using regular maps [22],
[48], it is also possible to obtain hyperbolic tiling. Using
the regular maps that correspond to hyperbolic tiles as
guide shapes, 2-fold k-way genus-n fabrics can be obtained.
From these fabrics, one can also obtain space filling shapes.
For practical applications, there is a need for a significant
amount theoretical work.
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6.2 Application to Arbitrary Shapes

Extension of this work for arbitrary shapes is also possible
using extended graph rotation systems (EGRS) [15]. Ex-
tended graph rotation systems provides a simple method-
ology to convert 2-manifold or 3-manifold mesh into knots
in 3-space [16], [18], [47]. An advantage is that both shape
of the curves and shape of the domain is fully defined
by underlying polygonal mesh. Another advantage of this
approach is that we can still obtain locally regular structures
by applying subdivision schemes. This can help to reduce
the number of distinct tiles. This particular generalization,
moreover, can provide an extremely rich parameter space,
which can, in turn make it harder to evaluate results.
From this perspective, starting with bi-axial woven cases
make sense since they provide a solid initial framework
for preliminary analysis. As we have seen in this paper,
even a relatively simple extension to curved domains that
are homomorphic to rectangular prisms significantly extend
the parameter space. However, from our preliminary explo-
rations, several practical challenges (such as configuring the
Voronoi sites within a shell domain, appropriate selection of
shell thickness, etc.) need to be investigated further.

6.3 Locking

The key open question that we hope to answer in our future
work is a formally supported computational methodology
for determining minimum tile repetition to generate pure
interlocking of woven tiles. Here, Dawson’s work on the
enumeration of weave families can provide an important
starting point as a means to develop such a method based
on sound mathematical principles. We see that the locking
ability of woven tiles is related to three interlinked concepts
in geometry and topology literature, namely, liftability [49],
oriented matroids [50], and planar layouts of lines in 3-
space [46]. To simply determine repetitions for locking is
only the first step. Once we obtain a locking configuration,
the second challenge is to determine the minimum number
of flexible/compliant elements to make the assembly possi-
ble. We only showed this example for the plain woven tiles
(Figure 1e). To the best of our knowledge, a general strategy
for this problem is currently unavailable.

6.4 Mechanical Behavior & Topology

We observed that there is a correlation between the weave
topology and the distribution of stresses across the inter-
locking elements of the assembly. A formal methodology
for connecting the topology and structural properties is
an important future direction that needs attention. As an
important example, determining the relationship between
direction of stress distributions to the weave parameters (the
numbers a, b, and c in Figure 3a) will allow for systematic
design of woven tiles for specific applications. Be that as it
may, one of the most surprising results for us was the stark
difference in the force required for failure in comparison to
monolithic blocks. We believe a much deeper investigation
is needed to understand why this happens such that we can
generalize beyond this work to other structures constructed
using other algorithms.

7 CONCLUSION & FUTURE DIRECTIONS

In this paper, we presented a methodology to design inter-
locking space-filling tiles that we call woven tiles that are
generated using the topology of woven fabrics. To this end,
we developed a method to create desired input curves seg-
ments using the properties of 2-fold 2-way genus-1 fabrics.
We further developed a simple method to compute Voronoi
decomposition of the curve segments. We demonstrated our
general methodology by designing, fabricating, assembling,
and mechanically analyzing woven tile assemblies. We 3D-
printed some of these tiles and physically observed their
mathematical and physical properties. We also developed
molds to directly cast these shapes with a wider range of
materials such as silicone and aluminium. While our phys-
ical evaluation of the individual and assembled properties
of these tiles aligns with the current literature on woven
fabrics, we show some interesting additional properties
that were not previously apparent. Furthermore, our results
suggest that interlocking these tiles have potential to replace
existing extrusion based building blocks (such as bricks)
which do not provide interlocking capability.

We want to point out that 2-fold fabrics are not really
a final frontier. It is also possible to represent k-fold fab-
rics using 3-manifold meshes as guide shapes [47]. The
extension to k-fold fabrics requires even more theoretical
foundations, but it demonstrates the potential. A significant
advantage of using guide shapes is that the topological
properties of the knotted structures do not change with any
geometric perturbation of the guide shapes. In conclusion,
even though we chose our proof of concept tiles from 2-
fold 2-way types, the ideas in this paper can be extended
into more general types of fabrics with the maturation of
theoretical work in regular maps and 3-manifold meshes.
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APPENDIX

The principal Stress for each of the curved domain cases
studied in Figure 18. Each figure has the three weaving
patterns plain, twill, and satin. The monolithic case is
also shown for each domain. The maximum, medium and
maximum stresses were used since some of the cases are
oriented in such a way that the force was applied in the
Z direction while other cases Y was the direction of force.
Using the maximum, medium, and minimum allow for
greater comparison through all of the weaves and domains
regardless of initial orientation.
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Fig. 20: The maximum principal stress for WovenTiles in comparison to monolithic blocks.
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Fig. 21: The second-largest principal stress for WovenTiles in comparison to monolithic blocks.
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Fig. 22: The minimum principal stress for WovenTiles in comparison to monolithic blocks.
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